jishnunair commited on
Commit
390fd8d
·
verified ·
1 Parent(s): ad13f83

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -1
README.md CHANGED
@@ -36,8 +36,42 @@ It achieves the following results on the evaluation set:
36
 
37
  The training data consists of the 4 most widely available ner_tags from the Finer-139 dataset. The training and the test data were curated from this source accordingly
38
 
39
- ## Training procedure
 
 
 
 
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  ### Training hyperparameters
42
 
43
  The following hyperparameters were used during training:
 
36
 
37
  The training data consists of the 4 most widely available ner_tags from the Finer-139 dataset. The training and the test data were curated from this source accordingly
38
 
39
+ ## Prediction procedure
40
+ ```
41
+ from transformers import TAutoTokenizer
42
+ from optimum.onnxruntime import ORTModelForTokenClassification
43
+ import torch
44
 
45
+ def onnx_inference(checkpoint, test_data, export=False):
46
+ test_text = " ".join(test_data['tokens'])
47
+ print("Test Text: " + test_text)
48
+
49
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
50
+ model = ORTModelForTokenClassification.from_pretrained(checkpoint, export=export)
51
+
52
+ inputs = tokenizer(test_text, return_tensors="pt")
53
+ outputs = model(**inputs).logits
54
+
55
+ predictions = torch.argmax(outputs, dim=2)
56
+
57
+ # Convert each tensor element to a scalar before calling .item()
58
+ predicted_token_class = [label_list[int(t)] for t in predictions[0]]
59
+ ner_tags = [label_list[int(t)] for t in test_data['ner_tags']]
60
+
61
+ print("Original Tags: ")
62
+ print(ner_tags)
63
+ print("Predicted Tags: ")
64
+ print(predicted_token_class)
65
+
66
+ onnx_model_path = "" #add the path
67
+
68
+ onnx_inference(onnx_model_path, test_data)
69
+
70
+ """
71
+ Here the test_data should contain "tokens" and "ner_tags". This can be of type Dataset.
72
+ """
73
+
74
+ ```
75
  ### Training hyperparameters
76
 
77
  The following hyperparameters were used during training: