File size: 2,251 Bytes
8c46fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3890bcb
8c46fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from transformer_flux import FluxTransformer2DModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
import os

check_min_version("0.30.2")

# Set image path , mask path and prompt
# image_path='https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha/resolve/main/images/bucket.png',
# mask_path='https://huggingface.co/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Alpha/resolve/main/images/bucket_mask.jpeg',

current_dir = os.path.dirname(os.path.abspath(__file__))
image_path = os.path.join(current_dir, "images_bucket.png")
mask_path = os.path.join(current_dir, "images_bucket_mask.jpeg")


prompt='a person wearing a white shoe, carrying a white bucket with text "Jitesh" on it with red color'

# print(f"Checkpoint file: {checkpoint_file}")

# Build pipeline
controlnet = FluxControlNetModel.from_pretrained("jiteshdhamaniya/alimama-creative-FLUX.1-dev-Controlnet-Inpainting-Alpha", torch_dtype=torch.bfloat16, local_files_only=True)
transformer = FluxTransformer2DModel.from_pretrained(
        "black-forest-labs/FLUX.1-dev", subfolder='transformer', torch_dtype=torch.bfloat16, local_files_only=True
    )
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    controlnet=controlnet,
    transformer=transformer,
    torch_dtype=torch.bfloat16
).to("mps")
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)

# Load image and mask
size = (768, 768)
image = load_image(image_path).convert("RGB").resize(size)
mask = load_image(mask_path).convert("RGB").resize(size)
generator = torch.Generator(device="mps").manual_seed(24)

# Inpaint
result = pipe(
    prompt=prompt,
    height=size[1],
    width=size[0],
    control_image=image,
    control_mask=mask,
    num_inference_steps=28,
    generator=generator,
    controlnet_conditioning_scale=0.9,
    guidance_scale=3.5,
    negative_prompt="",
    true_guidance_scale=1.0 # default: 3.5 for alpha and 1.0 for beta
).images[0]

result.save('flux_inpaint.png')
print("Successfully inpaint image")