--- license: apache-2.0 tags: - generated_from_trainer metrics: - recall - precision - f1 model-index: - name: model1 results: [] --- # model1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0018 - Recall: 0.9997 - Precision: 0.9997 - F1: 0.9997 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Recall | Precision | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.0238 | 1.0 | 856 | 0.0024 | 0.9995 | 0.9995 | 0.9995 | | 0.0013 | 2.0 | 1712 | 0.0018 | 0.9997 | 0.9997 | 0.9997 | | 0.0006 | 3.0 | 2568 | 0.0019 | 0.9997 | 0.9997 | 0.9997 | ### Framework versions - Transformers 4.27.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2