File size: 1,677 Bytes
b94ece5
435db22
 
 
 
 
 
 
b94ece5
435db22
 
 
 
 
 
 
 
0e9409b
435db22
 
 
 
 
 
 
 
 
 
 
 
 
b94ece5
 
435db22
 
 
 
56c380c
 
435db22
56c380c
 
435db22
 
 
 
b94ece5
435db22
 
 
 
0e9409b
 
 
 
 
 
435db22
 
 
b94ece5
435db22
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: bigcode-openrail-m
base_model: bigcode/starcoder
tags:
- generated_from_trainer
model-index:
- name: starcoder-cpp2py-newsnippet1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# starcoder-cpp2py-newsnippet1

This model is a fine-tuned version of [bigcode/starcoder](https://huggingface.co/bigcode/starcoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1964

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 9e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- training_steps: 150

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.3875        | 0.17  | 25   | 0.4694          |
| 0.2947        | 0.33  | 50   | 0.2126          |
| 0.2152        | 0.5   | 75   | 0.2016          |
| 0.2054        | 0.67  | 100  | 0.1974          |
| 0.2004        | 0.83  | 125  | 0.1966          |
| 0.1883        | 1.05  | 150  | 0.1964          |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3