resume: false device: cuda use_amp: false seed: 1000 dataset_repo_id: jmercat/koch_feed_cat video_backend: pyav training: offline_steps: 8000 num_workers: 4 batch_size: 64 eval_freq: -1 log_freq: 200 save_checkpoint: true save_freq: 800 online_steps: 0 online_rollout_n_episodes: 1 online_rollout_batch_size: 1 online_steps_between_rollouts: 1 online_sampling_ratio: 0.5 online_env_seed: null online_buffer_capacity: null online_buffer_seed_size: 0 do_online_rollout_async: false image_transforms: enable: false max_num_transforms: 3 random_order: false brightness: weight: 1 min_max: - 0.8 - 1.2 contrast: weight: 1 min_max: - 0.8 - 1.2 saturation: weight: 1 min_max: - 0.5 - 1.5 hue: weight: 1 min_max: - -0.05 - 0.05 sharpness: weight: 1 min_max: - 0.8 - 1.2 grad_clip_norm: 10 lr: 0.0001 lr_scheduler: cosine lr_warmup_steps: 500 adam_betas: - 0.95 - 0.999 adam_eps: 1.0e-08 adam_weight_decay: 1.0e-06 delta_timestamps: action: - 0.0 - 0.03333333333333333 - 0.06666666666666667 - 0.1 - 0.13333333333333333 - 0.16666666666666666 - 0.2 - 0.23333333333333334 - 0.26666666666666666 - 0.3 - 0.3333333333333333 - 0.36666666666666664 - 0.4 - 0.43333333333333335 - 0.4666666666666667 - 0.5 eval: n_episodes: 5 batch_size: 5 use_async_envs: false wandb: enable: true disable_artifact: false project: lerobot notes: '' fps: 30 env: name: real_world task: null state_dim: 6 action_dim: 6 fps: ${fps} policy: name: diffusion n_obs_steps: 1 horizon: 16 n_action_steps: 8 input_shapes: observation.images.phone: - 3 - 480 - 640 observation.state: - ${env.state_dim} output_shapes: action: - ${env.action_dim} input_normalization_modes: observation.images.phone: mean_std observation.state: mean_std output_normalization_modes: action: mean_std vision_backbone: resnet18 crop_shape: - 432 - 576 crop_is_random: true pretrained_backbone_weights: ResNet18_Weights.IMAGENET1K_V1 use_group_norm: false spatial_softmax_num_keypoints: 32 down_dims: - 512 - 1024 - 2048 kernel_size: 5 n_groups: 8 diffusion_step_embed_dim: 128 use_film_scale_modulation: true noise_scheduler_type: DDPM num_train_timesteps: 100 beta_schedule: squaredcos_cap_v2 beta_start: 0.0001 beta_end: 0.02 prediction_type: epsilon clip_sample: true clip_sample_range: 1.0 num_inference_steps: null do_mask_loss_for_padding: false