--- language: - en library_name: sentence-transformers license: mit pipeline_tag: sentence-similarity tags: - feature-extraction - mteb - sentence-similarity - sentence-transformers model-index: - name: GIST-small-Embedding-v0 results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 75.26865671641791 - type: ap value: 38.25623793370476 - type: f1 value: 69.26434651320257 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 93.232225 - type: ap value: 89.97936072879344 - type: f1 value: 93.22122653806187 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 49.715999999999994 - type: f1 value: 49.169789920136076 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 34.922 - type: map_at_10 value: 50.524 - type: map_at_100 value: 51.247 - type: map_at_1000 value: 51.249 - type: map_at_3 value: 45.887 - type: map_at_5 value: 48.592999999999996 - type: mrr_at_1 value: 34.922 - type: mrr_at_10 value: 50.382000000000005 - type: mrr_at_100 value: 51.104000000000006 - type: mrr_at_1000 value: 51.105999999999995 - type: mrr_at_3 value: 45.733000000000004 - type: mrr_at_5 value: 48.428 - type: ndcg_at_1 value: 34.922 - type: ndcg_at_10 value: 59.12 - type: ndcg_at_100 value: 62.083999999999996 - type: ndcg_at_1000 value: 62.137 - type: ndcg_at_3 value: 49.616 - type: ndcg_at_5 value: 54.501 - type: precision_at_1 value: 34.922 - type: precision_at_10 value: 8.649 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 20.152 - type: precision_at_5 value: 14.466999999999999 - type: recall_at_1 value: 34.922 - type: recall_at_10 value: 86.48599999999999 - type: recall_at_100 value: 99.14699999999999 - type: recall_at_1000 value: 99.57300000000001 - type: recall_at_3 value: 60.455000000000005 - type: recall_at_5 value: 72.333 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 47.623282347623714 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 39.86487843524932 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 62.3290291318171 - type: mrr value: 75.2379853141626 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 88.52002953574285 - type: cos_sim_spearman value: 86.98752423842483 - type: euclidean_pearson value: 86.89442688314197 - type: euclidean_spearman value: 86.88631711307471 - type: manhattan_pearson value: 87.03723618507175 - type: manhattan_spearman value: 86.76041062975224 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 86.64935064935065 - type: f1 value: 86.61903824934998 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 39.21904455377494 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 35.43342755570654 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 31.843 - type: map_at_10 value: 43.379 - type: map_at_100 value: 44.946999999999996 - type: map_at_1000 value: 45.078 - type: map_at_3 value: 39.598 - type: map_at_5 value: 41.746 - type: mrr_at_1 value: 39.199 - type: mrr_at_10 value: 49.672 - type: mrr_at_100 value: 50.321000000000005 - type: mrr_at_1000 value: 50.365 - type: mrr_at_3 value: 46.805 - type: mrr_at_5 value: 48.579 - type: ndcg_at_1 value: 39.199 - type: ndcg_at_10 value: 50.163999999999994 - type: ndcg_at_100 value: 55.418 - type: ndcg_at_1000 value: 57.353 - type: ndcg_at_3 value: 44.716 - type: ndcg_at_5 value: 47.268 - type: precision_at_1 value: 39.199 - type: precision_at_10 value: 9.757 - type: precision_at_100 value: 1.552 - type: precision_at_1000 value: 0.20500000000000002 - type: precision_at_3 value: 21.602 - type: precision_at_5 value: 15.479000000000001 - type: recall_at_1 value: 31.843 - type: recall_at_10 value: 62.743 - type: recall_at_100 value: 84.78099999999999 - type: recall_at_1000 value: 96.86099999999999 - type: recall_at_3 value: 46.927 - type: recall_at_5 value: 54.355 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.321 - type: map_at_10 value: 39.062999999999995 - type: map_at_100 value: 40.403 - type: map_at_1000 value: 40.534 - type: map_at_3 value: 36.367 - type: map_at_5 value: 37.756 - type: mrr_at_1 value: 35.987 - type: mrr_at_10 value: 44.708999999999996 - type: mrr_at_100 value: 45.394 - type: mrr_at_1000 value: 45.436 - type: mrr_at_3 value: 42.463 - type: mrr_at_5 value: 43.663000000000004 - type: ndcg_at_1 value: 35.987 - type: ndcg_at_10 value: 44.585 - type: ndcg_at_100 value: 49.297999999999995 - type: ndcg_at_1000 value: 51.315 - type: ndcg_at_3 value: 40.569 - type: ndcg_at_5 value: 42.197 - type: precision_at_1 value: 35.987 - type: precision_at_10 value: 8.369 - type: precision_at_100 value: 1.366 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 19.427 - type: precision_at_5 value: 13.58 - type: recall_at_1 value: 29.321 - type: recall_at_10 value: 54.333 - type: recall_at_100 value: 74.178 - type: recall_at_1000 value: 86.732 - type: recall_at_3 value: 42.46 - type: recall_at_5 value: 47.089999999999996 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 38.811 - type: map_at_10 value: 51.114000000000004 - type: map_at_100 value: 52.22 - type: map_at_1000 value: 52.275000000000006 - type: map_at_3 value: 47.644999999999996 - type: map_at_5 value: 49.675000000000004 - type: mrr_at_1 value: 44.389 - type: mrr_at_10 value: 54.459 - type: mrr_at_100 value: 55.208999999999996 - type: mrr_at_1000 value: 55.239000000000004 - type: mrr_at_3 value: 51.954 - type: mrr_at_5 value: 53.571999999999996 - type: ndcg_at_1 value: 44.389 - type: ndcg_at_10 value: 56.979 - type: ndcg_at_100 value: 61.266 - type: ndcg_at_1000 value: 62.315 - type: ndcg_at_3 value: 51.342 - type: ndcg_at_5 value: 54.33 - type: precision_at_1 value: 44.389 - type: precision_at_10 value: 9.26 - type: precision_at_100 value: 1.226 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 22.926 - type: precision_at_5 value: 15.987000000000002 - type: recall_at_1 value: 38.811 - type: recall_at_10 value: 70.841 - type: recall_at_100 value: 89.218 - type: recall_at_1000 value: 96.482 - type: recall_at_3 value: 56.123999999999995 - type: recall_at_5 value: 63.322 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.378 - type: map_at_10 value: 34.311 - type: map_at_100 value: 35.399 - type: map_at_1000 value: 35.482 - type: map_at_3 value: 31.917 - type: map_at_5 value: 33.275 - type: mrr_at_1 value: 27.683999999999997 - type: mrr_at_10 value: 36.575 - type: mrr_at_100 value: 37.492 - type: mrr_at_1000 value: 37.556 - type: mrr_at_3 value: 34.35 - type: mrr_at_5 value: 35.525 - type: ndcg_at_1 value: 27.683999999999997 - type: ndcg_at_10 value: 39.247 - type: ndcg_at_100 value: 44.424 - type: ndcg_at_1000 value: 46.478 - type: ndcg_at_3 value: 34.684 - type: ndcg_at_5 value: 36.886 - type: precision_at_1 value: 27.683999999999997 - type: precision_at_10 value: 5.989 - type: precision_at_100 value: 0.899 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 14.84 - type: precision_at_5 value: 10.215 - type: recall_at_1 value: 25.378 - type: recall_at_10 value: 52.195 - type: recall_at_100 value: 75.764 - type: recall_at_1000 value: 91.012 - type: recall_at_3 value: 39.885999999999996 - type: recall_at_5 value: 45.279 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.326 - type: map_at_10 value: 25.247000000000003 - type: map_at_100 value: 26.473000000000003 - type: map_at_1000 value: 26.579000000000004 - type: map_at_3 value: 22.466 - type: map_at_5 value: 24.113 - type: mrr_at_1 value: 21.393 - type: mrr_at_10 value: 30.187 - type: mrr_at_100 value: 31.089 - type: mrr_at_1000 value: 31.15 - type: mrr_at_3 value: 27.279999999999998 - type: mrr_at_5 value: 29.127 - type: ndcg_at_1 value: 21.393 - type: ndcg_at_10 value: 30.668 - type: ndcg_at_100 value: 36.543 - type: ndcg_at_1000 value: 39.181 - type: ndcg_at_3 value: 25.552000000000003 - type: ndcg_at_5 value: 28.176000000000002 - type: precision_at_1 value: 21.393 - type: precision_at_10 value: 5.784000000000001 - type: precision_at_100 value: 1.001 - type: precision_at_1000 value: 0.136 - type: precision_at_3 value: 12.231 - type: precision_at_5 value: 9.179 - type: recall_at_1 value: 17.326 - type: recall_at_10 value: 42.415000000000006 - type: recall_at_100 value: 68.605 - type: recall_at_1000 value: 87.694 - type: recall_at_3 value: 28.343 - type: recall_at_5 value: 35.086 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.069 - type: map_at_10 value: 40.027 - type: map_at_100 value: 41.308 - type: map_at_1000 value: 41.412 - type: map_at_3 value: 36.864000000000004 - type: map_at_5 value: 38.641999999999996 - type: mrr_at_1 value: 35.707 - type: mrr_at_10 value: 45.527 - type: mrr_at_100 value: 46.348 - type: mrr_at_1000 value: 46.392 - type: mrr_at_3 value: 43.086 - type: mrr_at_5 value: 44.645 - type: ndcg_at_1 value: 35.707 - type: ndcg_at_10 value: 46.117000000000004 - type: ndcg_at_100 value: 51.468 - type: ndcg_at_1000 value: 53.412000000000006 - type: ndcg_at_3 value: 41.224 - type: ndcg_at_5 value: 43.637 - type: precision_at_1 value: 35.707 - type: precision_at_10 value: 8.459999999999999 - type: precision_at_100 value: 1.2970000000000002 - type: precision_at_1000 value: 0.165 - type: precision_at_3 value: 19.731 - type: precision_at_5 value: 14.013 - type: recall_at_1 value: 29.069 - type: recall_at_10 value: 58.343999999999994 - type: recall_at_100 value: 81.296 - type: recall_at_1000 value: 93.974 - type: recall_at_3 value: 44.7 - type: recall_at_5 value: 50.88700000000001 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.905 - type: map_at_10 value: 33.983000000000004 - type: map_at_100 value: 35.372 - type: map_at_1000 value: 35.487 - type: map_at_3 value: 30.902 - type: map_at_5 value: 32.505 - type: mrr_at_1 value: 29.794999999999998 - type: mrr_at_10 value: 39.28 - type: mrr_at_100 value: 40.215 - type: mrr_at_1000 value: 40.276 - type: mrr_at_3 value: 36.701 - type: mrr_at_5 value: 38.105 - type: ndcg_at_1 value: 29.794999999999998 - type: ndcg_at_10 value: 40.041 - type: ndcg_at_100 value: 45.884 - type: ndcg_at_1000 value: 48.271 - type: ndcg_at_3 value: 34.931 - type: ndcg_at_5 value: 37.044 - type: precision_at_1 value: 29.794999999999998 - type: precision_at_10 value: 7.546 - type: precision_at_100 value: 1.216 - type: precision_at_1000 value: 0.158 - type: precision_at_3 value: 16.933 - type: precision_at_5 value: 12.1 - type: recall_at_1 value: 23.905 - type: recall_at_10 value: 52.945 - type: recall_at_100 value: 77.551 - type: recall_at_1000 value: 93.793 - type: recall_at_3 value: 38.364 - type: recall_at_5 value: 44.044 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.24441666666667 - type: map_at_10 value: 34.4595 - type: map_at_100 value: 35.699999999999996 - type: map_at_1000 value: 35.8155 - type: map_at_3 value: 31.608333333333338 - type: map_at_5 value: 33.189416666666666 - type: mrr_at_1 value: 29.825250000000004 - type: mrr_at_10 value: 38.60875 - type: mrr_at_100 value: 39.46575 - type: mrr_at_1000 value: 39.52458333333333 - type: mrr_at_3 value: 36.145166666666675 - type: mrr_at_5 value: 37.57625 - type: ndcg_at_1 value: 29.825250000000004 - type: ndcg_at_10 value: 39.88741666666667 - type: ndcg_at_100 value: 45.17966666666667 - type: ndcg_at_1000 value: 47.440583333333336 - type: ndcg_at_3 value: 35.04591666666666 - type: ndcg_at_5 value: 37.32025 - type: precision_at_1 value: 29.825250000000004 - type: precision_at_10 value: 7.07225 - type: precision_at_100 value: 1.1462499999999998 - type: precision_at_1000 value: 0.15325 - type: precision_at_3 value: 16.18375 - type: precision_at_5 value: 11.526833333333334 - type: recall_at_1 value: 25.24441666666667 - type: recall_at_10 value: 51.744916666666676 - type: recall_at_100 value: 75.04574999999998 - type: recall_at_1000 value: 90.65558333333334 - type: recall_at_3 value: 38.28349999999999 - type: recall_at_5 value: 44.16591666666667 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.237000000000002 - type: map_at_10 value: 30.667 - type: map_at_100 value: 31.592 - type: map_at_1000 value: 31.688 - type: map_at_3 value: 28.810999999999996 - type: map_at_5 value: 29.788999999999998 - type: mrr_at_1 value: 26.840000000000003 - type: mrr_at_10 value: 33.305 - type: mrr_at_100 value: 34.089000000000006 - type: mrr_at_1000 value: 34.159 - type: mrr_at_3 value: 31.518 - type: mrr_at_5 value: 32.469 - type: ndcg_at_1 value: 26.840000000000003 - type: ndcg_at_10 value: 34.541 - type: ndcg_at_100 value: 39.206 - type: ndcg_at_1000 value: 41.592 - type: ndcg_at_3 value: 31.005 - type: ndcg_at_5 value: 32.554 - type: precision_at_1 value: 26.840000000000003 - type: precision_at_10 value: 5.3069999999999995 - type: precision_at_100 value: 0.8340000000000001 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 13.292000000000002 - type: precision_at_5 value: 9.049 - type: recall_at_1 value: 24.237000000000002 - type: recall_at_10 value: 43.862 - type: recall_at_100 value: 65.352 - type: recall_at_1000 value: 82.704 - type: recall_at_3 value: 34.009 - type: recall_at_5 value: 37.878 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.482 - type: map_at_10 value: 23.249 - type: map_at_100 value: 24.388 - type: map_at_1000 value: 24.519 - type: map_at_3 value: 20.971 - type: map_at_5 value: 22.192 - type: mrr_at_1 value: 19.993 - type: mrr_at_10 value: 26.985 - type: mrr_at_100 value: 27.975 - type: mrr_at_1000 value: 28.052 - type: mrr_at_3 value: 24.954 - type: mrr_at_5 value: 26.070999999999998 - type: ndcg_at_1 value: 19.993 - type: ndcg_at_10 value: 27.656 - type: ndcg_at_100 value: 33.256 - type: ndcg_at_1000 value: 36.275 - type: ndcg_at_3 value: 23.644000000000002 - type: ndcg_at_5 value: 25.466 - type: precision_at_1 value: 19.993 - type: precision_at_10 value: 5.093 - type: precision_at_100 value: 0.932 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 11.149000000000001 - type: precision_at_5 value: 8.149000000000001 - type: recall_at_1 value: 16.482 - type: recall_at_10 value: 37.141999999999996 - type: recall_at_100 value: 62.696 - type: recall_at_1000 value: 84.333 - type: recall_at_3 value: 26.031 - type: recall_at_5 value: 30.660999999999998 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 24.887999999999998 - type: map_at_10 value: 34.101 - type: map_at_100 value: 35.27 - type: map_at_1000 value: 35.370000000000005 - type: map_at_3 value: 31.283 - type: map_at_5 value: 32.72 - type: mrr_at_1 value: 29.011 - type: mrr_at_10 value: 38.004 - type: mrr_at_100 value: 38.879000000000005 - type: mrr_at_1000 value: 38.938 - type: mrr_at_3 value: 35.571999999999996 - type: mrr_at_5 value: 36.789 - type: ndcg_at_1 value: 29.011 - type: ndcg_at_10 value: 39.586 - type: ndcg_at_100 value: 44.939 - type: ndcg_at_1000 value: 47.236 - type: ndcg_at_3 value: 34.4 - type: ndcg_at_5 value: 36.519 - type: precision_at_1 value: 29.011 - type: precision_at_10 value: 6.763 - type: precision_at_100 value: 1.059 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 15.609 - type: precision_at_5 value: 10.896 - type: recall_at_1 value: 24.887999999999998 - type: recall_at_10 value: 52.42 - type: recall_at_100 value: 75.803 - type: recall_at_1000 value: 91.725 - type: recall_at_3 value: 38.080999999999996 - type: recall_at_5 value: 43.47 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 23.953 - type: map_at_10 value: 32.649 - type: map_at_100 value: 34.181 - type: map_at_1000 value: 34.398 - type: map_at_3 value: 29.567 - type: map_at_5 value: 31.263 - type: mrr_at_1 value: 29.051 - type: mrr_at_10 value: 37.419999999999995 - type: mrr_at_100 value: 38.396 - type: mrr_at_1000 value: 38.458 - type: mrr_at_3 value: 34.782999999999994 - type: mrr_at_5 value: 36.254999999999995 - type: ndcg_at_1 value: 29.051 - type: ndcg_at_10 value: 38.595 - type: ndcg_at_100 value: 44.6 - type: ndcg_at_1000 value: 47.158 - type: ndcg_at_3 value: 33.56 - type: ndcg_at_5 value: 35.870000000000005 - type: precision_at_1 value: 29.051 - type: precision_at_10 value: 7.53 - type: precision_at_100 value: 1.538 - type: precision_at_1000 value: 0.24 - type: precision_at_3 value: 15.744 - type: precision_at_5 value: 11.542 - type: recall_at_1 value: 23.953 - type: recall_at_10 value: 50.08200000000001 - type: recall_at_100 value: 77.364 - type: recall_at_1000 value: 93.57799999999999 - type: recall_at_3 value: 35.432 - type: recall_at_5 value: 41.875 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.72 - type: map_at_10 value: 25.724000000000004 - type: map_at_100 value: 26.846999999999998 - type: map_at_1000 value: 26.964 - type: map_at_3 value: 22.909 - type: map_at_5 value: 24.596999999999998 - type: mrr_at_1 value: 18.854000000000003 - type: mrr_at_10 value: 27.182000000000002 - type: mrr_at_100 value: 28.182000000000002 - type: mrr_at_1000 value: 28.274 - type: mrr_at_3 value: 24.276 - type: mrr_at_5 value: 26.115 - type: ndcg_at_1 value: 18.854000000000003 - type: ndcg_at_10 value: 30.470000000000002 - type: ndcg_at_100 value: 35.854 - type: ndcg_at_1000 value: 38.701 - type: ndcg_at_3 value: 24.924 - type: ndcg_at_5 value: 27.895999999999997 - type: precision_at_1 value: 18.854000000000003 - type: precision_at_10 value: 5.009 - type: precision_at_100 value: 0.835 - type: precision_at_1000 value: 0.117 - type: precision_at_3 value: 10.721 - type: precision_at_5 value: 8.133 - type: recall_at_1 value: 17.72 - type: recall_at_10 value: 43.617 - type: recall_at_100 value: 67.941 - type: recall_at_1000 value: 88.979 - type: recall_at_3 value: 29.044999999999998 - type: recall_at_5 value: 36.044 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 13.427 - type: map_at_10 value: 22.935 - type: map_at_100 value: 24.808 - type: map_at_1000 value: 24.994 - type: map_at_3 value: 19.533 - type: map_at_5 value: 21.261 - type: mrr_at_1 value: 30.945 - type: mrr_at_10 value: 43.242000000000004 - type: mrr_at_100 value: 44.013999999999996 - type: mrr_at_1000 value: 44.048 - type: mrr_at_3 value: 40.109 - type: mrr_at_5 value: 42.059999999999995 - type: ndcg_at_1 value: 30.945 - type: ndcg_at_10 value: 31.828 - type: ndcg_at_100 value: 38.801 - type: ndcg_at_1000 value: 42.126999999999995 - type: ndcg_at_3 value: 26.922 - type: ndcg_at_5 value: 28.483999999999998 - type: precision_at_1 value: 30.945 - type: precision_at_10 value: 9.844 - type: precision_at_100 value: 1.7309999999999999 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 20.477999999999998 - type: precision_at_5 value: 15.27 - type: recall_at_1 value: 13.427 - type: recall_at_10 value: 37.141000000000005 - type: recall_at_100 value: 61.007 - type: recall_at_1000 value: 79.742 - type: recall_at_3 value: 24.431 - type: recall_at_5 value: 29.725 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 9.122 - type: map_at_10 value: 18.799 - type: map_at_100 value: 25.724999999999998 - type: map_at_1000 value: 27.205000000000002 - type: map_at_3 value: 14.194999999999999 - type: map_at_5 value: 16.225 - type: mrr_at_1 value: 68.0 - type: mrr_at_10 value: 76.035 - type: mrr_at_100 value: 76.292 - type: mrr_at_1000 value: 76.297 - type: mrr_at_3 value: 74.458 - type: mrr_at_5 value: 75.558 - type: ndcg_at_1 value: 56.00000000000001 - type: ndcg_at_10 value: 39.761 - type: ndcg_at_100 value: 43.736999999999995 - type: ndcg_at_1000 value: 51.146 - type: ndcg_at_3 value: 45.921 - type: ndcg_at_5 value: 42.756 - type: precision_at_1 value: 68.0 - type: precision_at_10 value: 30.275000000000002 - type: precision_at_100 value: 9.343 - type: precision_at_1000 value: 1.8270000000000002 - type: precision_at_3 value: 49.167 - type: precision_at_5 value: 40.699999999999996 - type: recall_at_1 value: 9.122 - type: recall_at_10 value: 23.669999999999998 - type: recall_at_100 value: 48.719 - type: recall_at_1000 value: 72.033 - type: recall_at_3 value: 15.498999999999999 - type: recall_at_5 value: 18.657 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 55.885000000000005 - type: f1 value: 50.70726446938571 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 75.709 - type: map_at_10 value: 83.345 - type: map_at_100 value: 83.557 - type: map_at_1000 value: 83.572 - type: map_at_3 value: 82.425 - type: map_at_5 value: 83.013 - type: mrr_at_1 value: 81.593 - type: mrr_at_10 value: 88.331 - type: mrr_at_100 value: 88.408 - type: mrr_at_1000 value: 88.41 - type: mrr_at_3 value: 87.714 - type: mrr_at_5 value: 88.122 - type: ndcg_at_1 value: 81.593 - type: ndcg_at_10 value: 86.925 - type: ndcg_at_100 value: 87.67 - type: ndcg_at_1000 value: 87.924 - type: ndcg_at_3 value: 85.5 - type: ndcg_at_5 value: 86.283 - type: precision_at_1 value: 81.593 - type: precision_at_10 value: 10.264 - type: precision_at_100 value: 1.084 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 32.388 - type: precision_at_5 value: 19.991 - type: recall_at_1 value: 75.709 - type: recall_at_10 value: 93.107 - type: recall_at_100 value: 96.024 - type: recall_at_1000 value: 97.603 - type: recall_at_3 value: 89.08500000000001 - type: recall_at_5 value: 91.15299999999999 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 19.121 - type: map_at_10 value: 31.78 - type: map_at_100 value: 33.497 - type: map_at_1000 value: 33.696 - type: map_at_3 value: 27.893 - type: map_at_5 value: 30.087000000000003 - type: mrr_at_1 value: 38.272 - type: mrr_at_10 value: 47.176 - type: mrr_at_100 value: 48.002 - type: mrr_at_1000 value: 48.044 - type: mrr_at_3 value: 45.086999999999996 - type: mrr_at_5 value: 46.337 - type: ndcg_at_1 value: 38.272 - type: ndcg_at_10 value: 39.145 - type: ndcg_at_100 value: 45.696999999999996 - type: ndcg_at_1000 value: 49.0 - type: ndcg_at_3 value: 36.148 - type: ndcg_at_5 value: 37.023 - type: precision_at_1 value: 38.272 - type: precision_at_10 value: 11.065 - type: precision_at_100 value: 1.7840000000000003 - type: precision_at_1000 value: 0.23600000000000002 - type: precision_at_3 value: 24.587999999999997 - type: precision_at_5 value: 18.056 - type: recall_at_1 value: 19.121 - type: recall_at_10 value: 44.857 - type: recall_at_100 value: 69.774 - type: recall_at_1000 value: 89.645 - type: recall_at_3 value: 32.588 - type: recall_at_5 value: 37.939 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 36.428 - type: map_at_10 value: 56.891999999999996 - type: map_at_100 value: 57.82899999999999 - type: map_at_1000 value: 57.896 - type: map_at_3 value: 53.762 - type: map_at_5 value: 55.718 - type: mrr_at_1 value: 72.856 - type: mrr_at_10 value: 79.245 - type: mrr_at_100 value: 79.515 - type: mrr_at_1000 value: 79.525 - type: mrr_at_3 value: 78.143 - type: mrr_at_5 value: 78.822 - type: ndcg_at_1 value: 72.856 - type: ndcg_at_10 value: 65.204 - type: ndcg_at_100 value: 68.552 - type: ndcg_at_1000 value: 69.902 - type: ndcg_at_3 value: 60.632 - type: ndcg_at_5 value: 63.161 - type: precision_at_1 value: 72.856 - type: precision_at_10 value: 13.65 - type: precision_at_100 value: 1.6260000000000001 - type: precision_at_1000 value: 0.181 - type: precision_at_3 value: 38.753 - type: precision_at_5 value: 25.251 - type: recall_at_1 value: 36.428 - type: recall_at_10 value: 68.25099999999999 - type: recall_at_100 value: 81.317 - type: recall_at_1000 value: 90.27 - type: recall_at_3 value: 58.13 - type: recall_at_5 value: 63.126000000000005 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 89.4868 - type: ap value: 84.88319192880247 - type: f1 value: 89.46144458052846 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 21.282999999999998 - type: map_at_10 value: 33.045 - type: map_at_100 value: 34.238 - type: map_at_1000 value: 34.29 - type: map_at_3 value: 29.305999999999997 - type: map_at_5 value: 31.391000000000002 - type: mrr_at_1 value: 21.92 - type: mrr_at_10 value: 33.649 - type: mrr_at_100 value: 34.791 - type: mrr_at_1000 value: 34.837 - type: mrr_at_3 value: 30.0 - type: mrr_at_5 value: 32.039 - type: ndcg_at_1 value: 21.92 - type: ndcg_at_10 value: 39.729 - type: ndcg_at_100 value: 45.484 - type: ndcg_at_1000 value: 46.817 - type: ndcg_at_3 value: 32.084 - type: ndcg_at_5 value: 35.789 - type: precision_at_1 value: 21.92 - type: precision_at_10 value: 6.297 - type: precision_at_100 value: 0.918 - type: precision_at_1000 value: 0.10300000000000001 - type: precision_at_3 value: 13.639000000000001 - type: precision_at_5 value: 10.054 - type: recall_at_1 value: 21.282999999999998 - type: recall_at_10 value: 60.343999999999994 - type: recall_at_100 value: 86.981 - type: recall_at_1000 value: 97.205 - type: recall_at_3 value: 39.452999999999996 - type: recall_at_5 value: 48.333 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.47879616963064 - type: f1 value: 95.21800589958251 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 79.09256725946192 - type: f1 value: 60.554043889452515 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 75.53463349024882 - type: f1 value: 73.14418495756476 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 79.22663080026899 - type: f1 value: 79.331456217501 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 34.50316010430136 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 32.15612040042282 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 32.36227552557184 - type: mrr value: 33.57901344209811 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 5.6610000000000005 - type: map_at_10 value: 12.992 - type: map_at_100 value: 16.756999999999998 - type: map_at_1000 value: 18.25 - type: map_at_3 value: 9.471 - type: map_at_5 value: 11.116 - type: mrr_at_1 value: 43.653 - type: mrr_at_10 value: 53.388999999999996 - type: mrr_at_100 value: 53.982 - type: mrr_at_1000 value: 54.033 - type: mrr_at_3 value: 51.858000000000004 - type: mrr_at_5 value: 53.019000000000005 - type: ndcg_at_1 value: 41.641 - type: ndcg_at_10 value: 34.691 - type: ndcg_at_100 value: 32.305 - type: ndcg_at_1000 value: 41.132999999999996 - type: ndcg_at_3 value: 40.614 - type: ndcg_at_5 value: 38.456 - type: precision_at_1 value: 43.344 - type: precision_at_10 value: 25.881999999999998 - type: precision_at_100 value: 8.483 - type: precision_at_1000 value: 2.131 - type: precision_at_3 value: 38.803 - type: precision_at_5 value: 33.87 - type: recall_at_1 value: 5.6610000000000005 - type: recall_at_10 value: 16.826 - type: recall_at_100 value: 32.939 - type: recall_at_1000 value: 65.161 - type: recall_at_3 value: 10.756 - type: recall_at_5 value: 13.331000000000001 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 26.692 - type: map_at_10 value: 41.065000000000005 - type: map_at_100 value: 42.235 - type: map_at_1000 value: 42.27 - type: map_at_3 value: 36.635 - type: map_at_5 value: 39.219 - type: mrr_at_1 value: 30.214000000000002 - type: mrr_at_10 value: 43.443 - type: mrr_at_100 value: 44.326 - type: mrr_at_1000 value: 44.352000000000004 - type: mrr_at_3 value: 39.623999999999995 - type: mrr_at_5 value: 41.898 - type: ndcg_at_1 value: 30.214000000000002 - type: ndcg_at_10 value: 48.692 - type: ndcg_at_100 value: 53.671 - type: ndcg_at_1000 value: 54.522000000000006 - type: ndcg_at_3 value: 40.245 - type: ndcg_at_5 value: 44.580999999999996 - type: precision_at_1 value: 30.214000000000002 - type: precision_at_10 value: 8.3 - type: precision_at_100 value: 1.1079999999999999 - type: precision_at_1000 value: 0.11900000000000001 - type: precision_at_3 value: 18.521 - type: precision_at_5 value: 13.627 - type: recall_at_1 value: 26.692 - type: recall_at_10 value: 69.699 - type: recall_at_100 value: 91.425 - type: recall_at_1000 value: 97.78099999999999 - type: recall_at_3 value: 47.711 - type: recall_at_5 value: 57.643 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 70.962 - type: map_at_10 value: 84.772 - type: map_at_100 value: 85.402 - type: map_at_1000 value: 85.418 - type: map_at_3 value: 81.89 - type: map_at_5 value: 83.685 - type: mrr_at_1 value: 81.67 - type: mrr_at_10 value: 87.681 - type: mrr_at_100 value: 87.792 - type: mrr_at_1000 value: 87.79299999999999 - type: mrr_at_3 value: 86.803 - type: mrr_at_5 value: 87.392 - type: ndcg_at_1 value: 81.69 - type: ndcg_at_10 value: 88.429 - type: ndcg_at_100 value: 89.66 - type: ndcg_at_1000 value: 89.762 - type: ndcg_at_3 value: 85.75 - type: ndcg_at_5 value: 87.20700000000001 - type: precision_at_1 value: 81.69 - type: precision_at_10 value: 13.395000000000001 - type: precision_at_100 value: 1.528 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.507000000000005 - type: precision_at_5 value: 24.614 - type: recall_at_1 value: 70.962 - type: recall_at_10 value: 95.339 - type: recall_at_100 value: 99.543 - type: recall_at_1000 value: 99.984 - type: recall_at_3 value: 87.54899999999999 - type: recall_at_5 value: 91.726 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 55.506631779239555 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 60.63731341848479 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.852 - type: map_at_10 value: 13.175 - type: map_at_100 value: 15.623999999999999 - type: map_at_1000 value: 16.002 - type: map_at_3 value: 9.103 - type: map_at_5 value: 11.068999999999999 - type: mrr_at_1 value: 23.9 - type: mrr_at_10 value: 35.847 - type: mrr_at_100 value: 36.968 - type: mrr_at_1000 value: 37.018 - type: mrr_at_3 value: 32.300000000000004 - type: mrr_at_5 value: 34.14 - type: ndcg_at_1 value: 23.9 - type: ndcg_at_10 value: 21.889 - type: ndcg_at_100 value: 30.903000000000002 - type: ndcg_at_1000 value: 36.992000000000004 - type: ndcg_at_3 value: 20.274 - type: ndcg_at_5 value: 17.773 - type: precision_at_1 value: 23.9 - type: precision_at_10 value: 11.61 - type: precision_at_100 value: 2.4539999999999997 - type: precision_at_1000 value: 0.391 - type: precision_at_3 value: 19.133 - type: precision_at_5 value: 15.740000000000002 - type: recall_at_1 value: 4.852 - type: recall_at_10 value: 23.507 - type: recall_at_100 value: 49.775000000000006 - type: recall_at_1000 value: 79.308 - type: recall_at_3 value: 11.637 - type: recall_at_5 value: 15.947 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 86.03345827446948 - type: cos_sim_spearman value: 80.53174518259549 - type: euclidean_pearson value: 83.44538971660883 - type: euclidean_spearman value: 80.57344324098692 - type: manhattan_pearson value: 83.36528808195459 - type: manhattan_spearman value: 80.48931287157902 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 85.21363088257881 - type: cos_sim_spearman value: 75.56589127055523 - type: euclidean_pearson value: 82.32868324521908 - type: euclidean_spearman value: 75.31928550664554 - type: manhattan_pearson value: 82.31332875713211 - type: manhattan_spearman value: 75.35376322099196 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 85.09085593258487 - type: cos_sim_spearman value: 86.26355088415221 - type: euclidean_pearson value: 85.49646115361156 - type: euclidean_spearman value: 86.20652472228703 - type: manhattan_pearson value: 85.44084081123815 - type: manhattan_spearman value: 86.1162623448951 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 84.68250248349368 - type: cos_sim_spearman value: 82.29883673695083 - type: euclidean_pearson value: 84.17633035446019 - type: euclidean_spearman value: 82.19990511264791 - type: manhattan_pearson value: 84.17408410692279 - type: manhattan_spearman value: 82.249873895981 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 87.31878760045024 - type: cos_sim_spearman value: 88.7364409031183 - type: euclidean_pearson value: 88.230537618603 - type: euclidean_spearman value: 88.76484309646318 - type: manhattan_pearson value: 88.17689071136469 - type: manhattan_spearman value: 88.72809249037928 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 83.41078559110638 - type: cos_sim_spearman value: 85.27439135411049 - type: euclidean_pearson value: 84.5333571592088 - type: euclidean_spearman value: 85.25645460575957 - type: manhattan_pearson value: 84.38428921610226 - type: manhattan_spearman value: 85.07796040798796 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 88.82374132382576 - type: cos_sim_spearman value: 89.02101343562433 - type: euclidean_pearson value: 89.50729765458932 - type: euclidean_spearman value: 89.04184772869253 - type: manhattan_pearson value: 89.51737904059856 - type: manhattan_spearman value: 89.12925950440676 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 67.56051823873482 - type: cos_sim_spearman value: 68.50988748185463 - type: euclidean_pearson value: 69.16524346147456 - type: euclidean_spearman value: 68.61859952449579 - type: manhattan_pearson value: 69.10618915706995 - type: manhattan_spearman value: 68.36401769459522 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 85.4159693872625 - type: cos_sim_spearman value: 87.07819121764247 - type: euclidean_pearson value: 87.03013260863153 - type: euclidean_spearman value: 87.06547293631309 - type: manhattan_pearson value: 86.8129744446062 - type: manhattan_spearman value: 86.88494096335627 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 86.47758088996575 - type: mrr value: 96.17891458577733 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 57.538999999999994 - type: map_at_10 value: 66.562 - type: map_at_100 value: 67.254 - type: map_at_1000 value: 67.284 - type: map_at_3 value: 63.722 - type: map_at_5 value: 65.422 - type: mrr_at_1 value: 60.0 - type: mrr_at_10 value: 67.354 - type: mrr_at_100 value: 67.908 - type: mrr_at_1000 value: 67.93299999999999 - type: mrr_at_3 value: 65.056 - type: mrr_at_5 value: 66.43900000000001 - type: ndcg_at_1 value: 60.0 - type: ndcg_at_10 value: 70.858 - type: ndcg_at_100 value: 73.67099999999999 - type: ndcg_at_1000 value: 74.26700000000001 - type: ndcg_at_3 value: 65.911 - type: ndcg_at_5 value: 68.42200000000001 - type: precision_at_1 value: 60.0 - type: precision_at_10 value: 9.4 - type: precision_at_100 value: 1.083 - type: precision_at_1000 value: 0.11299999999999999 - type: precision_at_3 value: 25.444 - type: precision_at_5 value: 17.0 - type: recall_at_1 value: 57.538999999999994 - type: recall_at_10 value: 83.233 - type: recall_at_100 value: 95.667 - type: recall_at_1000 value: 100.0 - type: recall_at_3 value: 69.883 - type: recall_at_5 value: 76.19399999999999 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.82574257425742 - type: cos_sim_ap value: 95.78722833053911 - type: cos_sim_f1 value: 90.94650205761316 - type: cos_sim_precision value: 93.64406779661016 - type: cos_sim_recall value: 88.4 - type: dot_accuracy value: 99.83366336633664 - type: dot_ap value: 95.89733601612964 - type: dot_f1 value: 91.41981613891727 - type: dot_precision value: 93.42379958246346 - type: dot_recall value: 89.5 - type: euclidean_accuracy value: 99.82574257425742 - type: euclidean_ap value: 95.75227035138846 - type: euclidean_f1 value: 90.96509240246407 - type: euclidean_precision value: 93.45991561181435 - type: euclidean_recall value: 88.6 - type: manhattan_accuracy value: 99.82574257425742 - type: manhattan_ap value: 95.76278266220176 - type: manhattan_f1 value: 91.08409321175279 - type: manhattan_precision value: 92.29979466119097 - type: manhattan_recall value: 89.9 - type: max_accuracy value: 99.83366336633664 - type: max_ap value: 95.89733601612964 - type: max_f1 value: 91.41981613891727 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 61.905425988638605 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 36.159589881679736 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 53.0605499476397 - type: mrr value: 53.91594516594517 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 30.202718009067 - type: cos_sim_spearman value: 31.136199912366987 - type: dot_pearson value: 30.66329011927951 - type: dot_spearman value: 30.107664909625107 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.209 - type: map_at_10 value: 1.712 - type: map_at_100 value: 9.464 - type: map_at_1000 value: 23.437 - type: map_at_3 value: 0.609 - type: map_at_5 value: 0.9440000000000001 - type: mrr_at_1 value: 78.0 - type: mrr_at_10 value: 86.833 - type: mrr_at_100 value: 86.833 - type: mrr_at_1000 value: 86.833 - type: mrr_at_3 value: 85.333 - type: mrr_at_5 value: 86.833 - type: ndcg_at_1 value: 74.0 - type: ndcg_at_10 value: 69.14 - type: ndcg_at_100 value: 53.047999999999995 - type: ndcg_at_1000 value: 48.577 - type: ndcg_at_3 value: 75.592 - type: ndcg_at_5 value: 72.509 - type: precision_at_1 value: 78.0 - type: precision_at_10 value: 73.0 - type: precision_at_100 value: 54.44 - type: precision_at_1000 value: 21.326 - type: precision_at_3 value: 80.667 - type: precision_at_5 value: 77.2 - type: recall_at_1 value: 0.209 - type: recall_at_10 value: 1.932 - type: recall_at_100 value: 13.211999999999998 - type: recall_at_1000 value: 45.774 - type: recall_at_3 value: 0.644 - type: recall_at_5 value: 1.0290000000000001 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 2.609 - type: map_at_10 value: 8.334999999999999 - type: map_at_100 value: 14.604000000000001 - type: map_at_1000 value: 16.177 - type: map_at_3 value: 4.87 - type: map_at_5 value: 6.3149999999999995 - type: mrr_at_1 value: 32.653 - type: mrr_at_10 value: 45.047 - type: mrr_at_100 value: 45.808 - type: mrr_at_1000 value: 45.808 - type: mrr_at_3 value: 41.497 - type: mrr_at_5 value: 43.231 - type: ndcg_at_1 value: 30.612000000000002 - type: ndcg_at_10 value: 21.193 - type: ndcg_at_100 value: 34.97 - type: ndcg_at_1000 value: 46.69 - type: ndcg_at_3 value: 24.823 - type: ndcg_at_5 value: 22.872999999999998 - type: precision_at_1 value: 32.653 - type: precision_at_10 value: 17.959 - type: precision_at_100 value: 7.4079999999999995 - type: precision_at_1000 value: 1.537 - type: precision_at_3 value: 25.85 - type: precision_at_5 value: 22.448999999999998 - type: recall_at_1 value: 2.609 - type: recall_at_10 value: 13.63 - type: recall_at_100 value: 47.014 - type: recall_at_1000 value: 83.176 - type: recall_at_3 value: 5.925 - type: recall_at_5 value: 8.574 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 72.80239999999999 - type: ap value: 15.497911013214791 - type: f1 value: 56.258411577947285 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.00452744765139 - type: f1 value: 61.42228624410908 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 50.00516915962345 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 85.62317458425225 - type: cos_sim_ap value: 72.95115658063823 - type: cos_sim_f1 value: 66.78976523344764 - type: cos_sim_precision value: 66.77215189873418 - type: cos_sim_recall value: 66.80738786279683 - type: dot_accuracy value: 85.62317458425225 - type: dot_ap value: 73.10385271517778 - type: dot_f1 value: 66.94853829427399 - type: dot_precision value: 61.74242424242424 - type: dot_recall value: 73.11345646437995 - type: euclidean_accuracy value: 85.65893783155511 - type: euclidean_ap value: 72.87428208473992 - type: euclidean_f1 value: 66.70919994896005 - type: euclidean_precision value: 64.5910551025451 - type: euclidean_recall value: 68.97097625329816 - type: manhattan_accuracy value: 85.59933241938367 - type: manhattan_ap value: 72.67282695064966 - type: manhattan_f1 value: 66.67537215983286 - type: manhattan_precision value: 66.00310237849017 - type: manhattan_recall value: 67.36147757255937 - type: max_accuracy value: 85.65893783155511 - type: max_ap value: 73.10385271517778 - type: max_f1 value: 66.94853829427399 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 88.69096130709822 - type: cos_sim_ap value: 85.30326978668063 - type: cos_sim_f1 value: 77.747088683189 - type: cos_sim_precision value: 75.4491451753115 - type: cos_sim_recall value: 80.189405605174 - type: dot_accuracy value: 88.43870066363954 - type: dot_ap value: 84.62999949222983 - type: dot_f1 value: 77.3074661963551 - type: dot_precision value: 73.93871239808828 - type: dot_recall value: 80.99784416384355 - type: euclidean_accuracy value: 88.70066363953894 - type: euclidean_ap value: 85.34184508966621 - type: euclidean_f1 value: 77.76871756856931 - type: euclidean_precision value: 74.97855917667239 - type: euclidean_recall value: 80.77456113335386 - type: manhattan_accuracy value: 88.68319944114566 - type: manhattan_ap value: 85.3026464242333 - type: manhattan_f1 value: 77.66561049296294 - type: manhattan_precision value: 74.4665818849795 - type: manhattan_recall value: 81.15183246073299 - type: max_accuracy value: 88.70066363953894 - type: max_ap value: 85.34184508966621 - type: max_f1 value: 77.76871756856931 ---