joachimsallstrom
commited on
Commit
·
a0da56a
1
Parent(s):
2a7462a
Upload 5 files
Browse files- SDXL-LoRA-RNPD.ipynb +317 -0
- lora_sdxl.py +1128 -0
- mainrunpodA1111.py +501 -0
- sdxllorarunpod.py +1131 -0
- train_dreambooth_rnpd_sdxl_lora.py +782 -0
SDXL-LoRA-RNPD.ipynb
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "b01332d1-1384-4405-8af6-335c768da6e2",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"## SDXL LoRA Trainer by TheLastBen https://github.com/TheLastBen/fast-stable-diffusion, if you encounter any issues, feel free to discuss them."
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "markdown",
|
13 |
+
"id": "8f82bb3b-76de-4e2c-9251-df918f8f2cbe",
|
14 |
+
"metadata": {},
|
15 |
+
"source": [
|
16 |
+
"# Dependencies"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 1,
|
22 |
+
"id": "3d144e06-1f7a-467b-9cf1-452bf773f0ab",
|
23 |
+
"metadata": {
|
24 |
+
"tags": []
|
25 |
+
},
|
26 |
+
"outputs": [
|
27 |
+
{
|
28 |
+
"data": {
|
29 |
+
"application/vnd.jupyter.widget-view+json": {
|
30 |
+
"model_id": "d1e84d74d92c46f8aa78c03f50a0d0d8",
|
31 |
+
"version_major": 2,
|
32 |
+
"version_minor": 0
|
33 |
+
},
|
34 |
+
"text/plain": [
|
35 |
+
"Button(button_style='success', description='Done!', disabled=True, icon='check', style=ButtonStyle(), tooltip=…"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
"metadata": {},
|
39 |
+
"output_type": "display_data"
|
40 |
+
}
|
41 |
+
],
|
42 |
+
"source": [
|
43 |
+
"# Install the dependencies\n",
|
44 |
+
"\n",
|
45 |
+
"force_reinstall= False\n",
|
46 |
+
"\n",
|
47 |
+
"# Set to true only if you want to install the dependencies again.\n",
|
48 |
+
"\n",
|
49 |
+
"#--------------------\n",
|
50 |
+
"with open('/dev/null', 'w') as devnull:import requests, os, time, importlib;open('/workspace/sdxllorarunpod.py', 'wb').write(requests.get('https://huggingface.co/datasets/TheLastBen/RNPD/raw/main/Scripts/sdxllorarunpod.py').content);os.chdir('/workspace');import sdxllorarunpod;importlib.reload(sdxllorarunpod);from sdxllorarunpod import *;restored=False;restoreda=False;Deps(force_reinstall)"
|
51 |
+
]
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"cell_type": "markdown",
|
55 |
+
"id": "461b7686-e4aa-4fa8-ab6f-5a6acbf4c601",
|
56 |
+
"metadata": {},
|
57 |
+
"source": [
|
58 |
+
"# Download the model"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": 2,
|
64 |
+
"id": "2f705bd1-35c9-49bd-84fd-03a1348cbe83",
|
65 |
+
"metadata": {
|
66 |
+
"tags": []
|
67 |
+
},
|
68 |
+
"outputs": [
|
69 |
+
{
|
70 |
+
"name": "stdout",
|
71 |
+
"output_type": "stream",
|
72 |
+
"text": [
|
73 |
+
"\u001b[1;32mUsing SDXL model\n"
|
74 |
+
]
|
75 |
+
}
|
76 |
+
],
|
77 |
+
"source": [
|
78 |
+
"# Run the cell to download the model\n",
|
79 |
+
"\n",
|
80 |
+
"#-------------\n",
|
81 |
+
"MODEL_NAMExl=dls_xlf(\"\", \"\", \"\")"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "markdown",
|
86 |
+
"id": "8e22327b-e0c3-424c-82e1-fb7f8a815c0b",
|
87 |
+
"metadata": {},
|
88 |
+
"source": [
|
89 |
+
"# Create/Load a Session"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": 3,
|
95 |
+
"id": "ac69c221-205a-40d2-b42e-6c8d515a43cc",
|
96 |
+
"metadata": {
|
97 |
+
"tags": []
|
98 |
+
},
|
99 |
+
"outputs": [
|
100 |
+
{
|
101 |
+
"name": "stdout",
|
102 |
+
"output_type": "stream",
|
103 |
+
"text": [
|
104 |
+
"\u001b[1;32mCreating session...\n",
|
105 |
+
"\u001b[1;32mSession created, proceed to uploading instance images\n"
|
106 |
+
]
|
107 |
+
}
|
108 |
+
],
|
109 |
+
"source": [
|
110 |
+
"Session_Name = \"aether_skin_230808_SDXL_LoRA_128_dim_50_epochs\"\n",
|
111 |
+
"\n",
|
112 |
+
"# Enter the session name, it if it exists, it will load it, otherwise it'll create an new session.\n",
|
113 |
+
"\n",
|
114 |
+
"#-----------------\n",
|
115 |
+
"[WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMExl]=sess_xl(Session_Name, MODEL_NAMExl if 'MODEL_NAMExl' in locals() else \"\")"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "markdown",
|
120 |
+
"id": "5d239e77-f7fd-404b-8006-081f15326412",
|
121 |
+
"metadata": {},
|
122 |
+
"source": [
|
123 |
+
"# Train LoRA"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"cell_type": "code",
|
128 |
+
"execution_count": null,
|
129 |
+
"id": "c54a7335-8402-42f2-9a71-9da99f6ea604",
|
130 |
+
"metadata": {
|
131 |
+
"tags": []
|
132 |
+
},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stdout",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
"\u001b[34m'########:'########:::::'###::::'####:'##::: ##:'####:'##::: ##::'######:::\n",
|
139 |
+
"... ##..:: ##.... ##:::'## ##:::. ##:: ###:: ##:. ##:: ###:: ##:'##... ##::\n",
|
140 |
+
"::: ##:::: ##:::: ##::'##:. ##::: ##:: ####: ##:: ##:: ####: ##: ##:::..:::\n",
|
141 |
+
"::: ##:::: ########::'##:::. ##:: ##:: ## ## ##:: ##:: ## ## ##: ##::'####:\n",
|
142 |
+
"::: ##:::: ##.. ##::: #########:: ##:: ##. ####:: ##:: ##. ####: ##::: ##::\n",
|
143 |
+
"::: ##:::: ##::. ##:: ##.... ##:: ##:: ##:. ###:: ##:: ##:. ###: ##::: ##::\n",
|
144 |
+
"::: ##:::: ##:::. ##: ##:::: ##:'####: ##::. ##:'####: ##::. ##:. ######:::\n",
|
145 |
+
":::..:::::..:::::..::..:::::..::....::..::::..::....::..::::..:::......::::\n",
|
146 |
+
"\u001b[0m\n"
|
147 |
+
]
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"name": "stderr",
|
151 |
+
"output_type": "stream",
|
152 |
+
"text": [
|
153 |
+
"Progress: 71%|███████ | 676/950 [06:22<02:23, 1.91it/s, loss=0.245, lr=5.75e-7] "
|
154 |
+
]
|
155 |
+
}
|
156 |
+
],
|
157 |
+
"source": [
|
158 |
+
"Resume_Training= False\n",
|
159 |
+
"\n",
|
160 |
+
"# If you're not satisfied with the result, Set to True, run again the cell and it will continue training the current model.\n",
|
161 |
+
"\n",
|
162 |
+
"\n",
|
163 |
+
"Training_Epochs= 50\n",
|
164 |
+
"\n",
|
165 |
+
"# Epoch = Number of steps/images.\n",
|
166 |
+
"\n",
|
167 |
+
"Learning_Rate= \"3e-6\"\n",
|
168 |
+
"\n",
|
169 |
+
"# keep it between 1e-6 and 6e-6\n",
|
170 |
+
"\n",
|
171 |
+
"\n",
|
172 |
+
"External_Captions= True\n",
|
173 |
+
"\n",
|
174 |
+
"# Load the captions from a text file for each instance image.\n",
|
175 |
+
"\n",
|
176 |
+
"\n",
|
177 |
+
"LoRA_Dim = 128\n",
|
178 |
+
"\n",
|
179 |
+
"# Dimension of the LoRa model, between 64 and 128 is good enough.\n",
|
180 |
+
"\n",
|
181 |
+
"\n",
|
182 |
+
"Resolution= 1024\n",
|
183 |
+
"\n",
|
184 |
+
"# 1024 is the native resolution.\n",
|
185 |
+
"\n",
|
186 |
+
"\n",
|
187 |
+
"Save_VRAM = False\n",
|
188 |
+
"\n",
|
189 |
+
"# Use as low as 9.7GB VRAM with Dim = 64, but slightly slower training.\n",
|
190 |
+
"\n",
|
191 |
+
"#-----------------\n",
|
192 |
+
"dbtrainxl(Resume_Training, Training_Epochs, Learning_Rate, LoRA_Dim, False, Resolution, MODEL_NAMExl, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, 0.03, Save_VRAM)"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"cell_type": "markdown",
|
197 |
+
"id": "e2751798-508e-47ad-8e54-95188bdab051",
|
198 |
+
"metadata": {
|
199 |
+
"jp-MarkdownHeadingCollapsed": true,
|
200 |
+
"tags": []
|
201 |
+
},
|
202 |
+
"source": [
|
203 |
+
"# Test the Trained Model"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "markdown",
|
208 |
+
"id": "d1bc48d6-1526-44c6-ab7c-cc1538c7f61c",
|
209 |
+
"metadata": {},
|
210 |
+
"source": [
|
211 |
+
"# ComfyUI"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": null,
|
217 |
+
"id": "26272665-16de-4042-a7a4-6b9205ff3309",
|
218 |
+
"metadata": {
|
219 |
+
"scrolled": true,
|
220 |
+
"tags": []
|
221 |
+
},
|
222 |
+
"outputs": [],
|
223 |
+
"source": [
|
224 |
+
"Args=\"--listen --port 3000\"\n",
|
225 |
+
"\n",
|
226 |
+
"\n",
|
227 |
+
"Download_SDXL_Model= True\n",
|
228 |
+
"\n",
|
229 |
+
"\n",
|
230 |
+
"Huggingface_token_optional= \"\"\n",
|
231 |
+
"\n",
|
232 |
+
"# Restore your backed-up Comfy folder by entering your huggingface token, leave it empty to start fresh or continue with the existing sd folder (if any).\n",
|
233 |
+
"\n",
|
234 |
+
"#--------------------\n",
|
235 |
+
"restored=sdcmff(Huggingface_token_optional, MDLPTH, Download_SDXL_Model, restored)\n",
|
236 |
+
"!python /workspace/ComfyUI/main.py $Args"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "markdown",
|
241 |
+
"id": "410520ca-7352-4fc4-907b-cb53f661074e",
|
242 |
+
"metadata": {},
|
243 |
+
"source": [
|
244 |
+
"# A1111"
|
245 |
+
]
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "code",
|
249 |
+
"execution_count": null,
|
250 |
+
"id": "351f18d5-f723-4d25-b1ae-1296a22c6d8c",
|
251 |
+
"metadata": {
|
252 |
+
"tags": []
|
253 |
+
},
|
254 |
+
"outputs": [],
|
255 |
+
"source": [
|
256 |
+
"User = \"\"\n",
|
257 |
+
"\n",
|
258 |
+
"Password= \"\"\n",
|
259 |
+
"\n",
|
260 |
+
"# Add credentials to your Gradio interface (optional).\n",
|
261 |
+
"\n",
|
262 |
+
"Download_SDXL_Model= True\n",
|
263 |
+
"\n",
|
264 |
+
"\n",
|
265 |
+
"Huggingface_token_optional= \"\"\n",
|
266 |
+
"\n",
|
267 |
+
"# Restore your backed-up SD folder by entering your huggingface token, leave it empty to start fresh or continue with the existing sd folder (if any).\n",
|
268 |
+
"\n",
|
269 |
+
"#-----------------\n",
|
270 |
+
"configf, restoreda=test(MDLPTH, User, Password, Huggingface_token_optional, Download_SDXL_Model, restoreda)\n",
|
271 |
+
"!python /workspace/sd/stable-diffusion-webui/webui.py $configf"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "markdown",
|
276 |
+
"id": "093d64a7-3d4e-4197-8075-4ed11c7f0ae8",
|
277 |
+
"metadata": {},
|
278 |
+
"source": [
|
279 |
+
"# Free up space"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": null,
|
285 |
+
"id": "370ba58a-d58d-4a80-9575-8c6e094e2626",
|
286 |
+
"metadata": {},
|
287 |
+
"outputs": [],
|
288 |
+
"source": [
|
289 |
+
"# Display a list of sessions from which you can remove any session you don't need anymore\n",
|
290 |
+
"\n",
|
291 |
+
"#-------------------------\n",
|
292 |
+
"clean()"
|
293 |
+
]
|
294 |
+
}
|
295 |
+
],
|
296 |
+
"metadata": {
|
297 |
+
"kernelspec": {
|
298 |
+
"display_name": "Python 3 (ipykernel)",
|
299 |
+
"language": "python",
|
300 |
+
"name": "python3"
|
301 |
+
},
|
302 |
+
"language_info": {
|
303 |
+
"codemirror_mode": {
|
304 |
+
"name": "ipython",
|
305 |
+
"version": 3
|
306 |
+
},
|
307 |
+
"file_extension": ".py",
|
308 |
+
"mimetype": "text/x-python",
|
309 |
+
"name": "python",
|
310 |
+
"nbconvert_exporter": "python",
|
311 |
+
"pygments_lexer": "ipython3",
|
312 |
+
"version": "3.10.12"
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"nbformat": 4,
|
316 |
+
"nbformat_minor": 5
|
317 |
+
}
|
lora_sdxl.py
ADDED
@@ -0,0 +1,1128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LoRA network module
|
2 |
+
# reference:
|
3 |
+
# https://github.com/microsoft/LoRA/blob/main/loralib/layers.py
|
4 |
+
# https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
|
5 |
+
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
from typing import Dict, List, Optional, Tuple, Type, Union
|
9 |
+
from diffusers import AutoencoderKL
|
10 |
+
from transformers import CLIPTextModel
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import re
|
14 |
+
|
15 |
+
|
16 |
+
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
|
17 |
+
|
18 |
+
|
19 |
+
class LoRAModule(torch.nn.Module):
|
20 |
+
"""
|
21 |
+
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
lora_name,
|
27 |
+
org_module: torch.nn.Module,
|
28 |
+
multiplier=1.0,
|
29 |
+
lora_dim=4,
|
30 |
+
alpha=1,
|
31 |
+
dropout=None,
|
32 |
+
rank_dropout=None,
|
33 |
+
module_dropout=None,
|
34 |
+
):
|
35 |
+
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
36 |
+
super().__init__()
|
37 |
+
self.lora_name = lora_name
|
38 |
+
|
39 |
+
if org_module.__class__.__name__ == "Conv2d":
|
40 |
+
in_dim = org_module.in_channels
|
41 |
+
out_dim = org_module.out_channels
|
42 |
+
else:
|
43 |
+
in_dim = org_module.in_features
|
44 |
+
out_dim = org_module.out_features
|
45 |
+
|
46 |
+
# if limit_rank:
|
47 |
+
# self.lora_dim = min(lora_dim, in_dim, out_dim)
|
48 |
+
# if self.lora_dim != lora_dim:
|
49 |
+
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
|
50 |
+
# else:
|
51 |
+
self.lora_dim = lora_dim
|
52 |
+
|
53 |
+
if org_module.__class__.__name__ == "Conv2d":
|
54 |
+
kernel_size = org_module.kernel_size
|
55 |
+
stride = org_module.stride
|
56 |
+
padding = org_module.padding
|
57 |
+
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
|
58 |
+
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
|
59 |
+
else:
|
60 |
+
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
|
61 |
+
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=False)
|
62 |
+
|
63 |
+
if type(alpha) == torch.Tensor:
|
64 |
+
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
|
65 |
+
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
|
66 |
+
self.scale = alpha / self.lora_dim
|
67 |
+
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
|
68 |
+
|
69 |
+
# same as microsoft's
|
70 |
+
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
71 |
+
torch.nn.init.zeros_(self.lora_up.weight)
|
72 |
+
|
73 |
+
self.multiplier = multiplier
|
74 |
+
self.org_module = org_module # remove in applying
|
75 |
+
self.dropout = dropout
|
76 |
+
self.rank_dropout = rank_dropout
|
77 |
+
self.module_dropout = module_dropout
|
78 |
+
|
79 |
+
def apply_to(self):
|
80 |
+
self.org_forward = self.org_module.forward
|
81 |
+
self.org_module.forward = self.forward
|
82 |
+
del self.org_module
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
org_forwarded = self.org_forward(x)
|
86 |
+
|
87 |
+
# module dropout
|
88 |
+
if self.module_dropout is not None and self.training:
|
89 |
+
if torch.rand(1) < self.module_dropout:
|
90 |
+
return org_forwarded
|
91 |
+
|
92 |
+
lx = self.lora_down(x)
|
93 |
+
|
94 |
+
# normal dropout
|
95 |
+
if self.dropout is not None and self.training:
|
96 |
+
lx = torch.nn.functional.dropout(lx, p=self.dropout)
|
97 |
+
|
98 |
+
# rank dropout
|
99 |
+
if self.rank_dropout is not None and self.training:
|
100 |
+
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
|
101 |
+
if len(lx.size()) == 3:
|
102 |
+
mask = mask.unsqueeze(1) # for Text Encoder
|
103 |
+
elif len(lx.size()) == 4:
|
104 |
+
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
|
105 |
+
lx = lx * mask
|
106 |
+
|
107 |
+
# scaling for rank dropout: treat as if the rank is changed
|
108 |
+
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
|
109 |
+
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
|
110 |
+
else:
|
111 |
+
scale = self.scale
|
112 |
+
|
113 |
+
lx = self.lora_up(lx)
|
114 |
+
|
115 |
+
return org_forwarded + lx * self.multiplier * scale
|
116 |
+
|
117 |
+
|
118 |
+
class LoRAInfModule(LoRAModule):
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
lora_name,
|
122 |
+
org_module: torch.nn.Module,
|
123 |
+
multiplier=1.0,
|
124 |
+
lora_dim=4,
|
125 |
+
alpha=1,
|
126 |
+
**kwargs,
|
127 |
+
):
|
128 |
+
# no dropout for inference
|
129 |
+
super().__init__(lora_name, org_module, multiplier, lora_dim, alpha)
|
130 |
+
|
131 |
+
self.org_module_ref = [org_module] # 後から参照できるように
|
132 |
+
self.enabled = True
|
133 |
+
|
134 |
+
# check regional or not by lora_name
|
135 |
+
self.text_encoder = False
|
136 |
+
if lora_name.startswith("lora_te_"):
|
137 |
+
self.regional = False
|
138 |
+
self.use_sub_prompt = True
|
139 |
+
self.text_encoder = True
|
140 |
+
elif "attn2_to_k" in lora_name or "attn2_to_v" in lora_name:
|
141 |
+
self.regional = False
|
142 |
+
self.use_sub_prompt = True
|
143 |
+
elif "time_emb" in lora_name:
|
144 |
+
self.regional = False
|
145 |
+
self.use_sub_prompt = False
|
146 |
+
else:
|
147 |
+
self.regional = True
|
148 |
+
self.use_sub_prompt = False
|
149 |
+
|
150 |
+
self.network: LoRANetwork = None
|
151 |
+
|
152 |
+
def set_network(self, network):
|
153 |
+
self.network = network
|
154 |
+
|
155 |
+
# freezeしてマージする
|
156 |
+
def merge_to(self, sd, dtype, device):
|
157 |
+
# get up/down weight
|
158 |
+
up_weight = sd["lora_up.weight"].to(torch.float).to(device)
|
159 |
+
down_weight = sd["lora_down.weight"].to(torch.float).to(device)
|
160 |
+
|
161 |
+
# extract weight from org_module
|
162 |
+
org_sd = self.org_module.state_dict()
|
163 |
+
weight = org_sd["weight"].to(torch.float)
|
164 |
+
|
165 |
+
# merge weight
|
166 |
+
if len(weight.size()) == 2:
|
167 |
+
# linear
|
168 |
+
weight = weight + self.multiplier * (up_weight @ down_weight) * self.scale
|
169 |
+
elif down_weight.size()[2:4] == (1, 1):
|
170 |
+
# conv2d 1x1
|
171 |
+
weight = (
|
172 |
+
weight
|
173 |
+
+ self.multiplier
|
174 |
+
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
175 |
+
* self.scale
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
# conv2d 3x3
|
179 |
+
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
|
180 |
+
# print(conved.size(), weight.size(), module.stride, module.padding)
|
181 |
+
weight = weight + self.multiplier * conved * self.scale
|
182 |
+
|
183 |
+
# set weight to org_module
|
184 |
+
org_sd["weight"] = weight.to(dtype)
|
185 |
+
self.org_module.load_state_dict(org_sd)
|
186 |
+
|
187 |
+
# 復元できるマージのため、このモジュールのweightを返す
|
188 |
+
def get_weight(self, multiplier=None):
|
189 |
+
if multiplier is None:
|
190 |
+
multiplier = self.multiplier
|
191 |
+
|
192 |
+
# get up/down weight from module
|
193 |
+
up_weight = self.lora_up.weight.to(torch.float)
|
194 |
+
down_weight = self.lora_down.weight.to(torch.float)
|
195 |
+
|
196 |
+
# pre-calculated weight
|
197 |
+
if len(down_weight.size()) == 2:
|
198 |
+
# linear
|
199 |
+
weight = self.multiplier * (up_weight @ down_weight) * self.scale
|
200 |
+
elif down_weight.size()[2:4] == (1, 1):
|
201 |
+
# conv2d 1x1
|
202 |
+
weight = (
|
203 |
+
self.multiplier
|
204 |
+
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
205 |
+
* self.scale
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
# conv2d 3x3
|
209 |
+
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
|
210 |
+
weight = self.multiplier * conved * self.scale
|
211 |
+
|
212 |
+
return weight
|
213 |
+
|
214 |
+
def set_region(self, region):
|
215 |
+
self.region = region
|
216 |
+
self.region_mask = None
|
217 |
+
|
218 |
+
def default_forward(self, x):
|
219 |
+
# print("default_forward", self.lora_name, x.size())
|
220 |
+
return self.org_forward(x) + self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
221 |
+
|
222 |
+
def forward(self, x):
|
223 |
+
if not self.enabled:
|
224 |
+
return self.org_forward(x)
|
225 |
+
|
226 |
+
if self.network is None or self.network.sub_prompt_index is None:
|
227 |
+
return self.default_forward(x)
|
228 |
+
if not self.regional and not self.use_sub_prompt:
|
229 |
+
return self.default_forward(x)
|
230 |
+
|
231 |
+
if self.regional:
|
232 |
+
return self.regional_forward(x)
|
233 |
+
else:
|
234 |
+
return self.sub_prompt_forward(x)
|
235 |
+
|
236 |
+
def get_mask_for_x(self, x):
|
237 |
+
# calculate size from shape of x
|
238 |
+
if len(x.size()) == 4:
|
239 |
+
h, w = x.size()[2:4]
|
240 |
+
area = h * w
|
241 |
+
else:
|
242 |
+
area = x.size()[1]
|
243 |
+
|
244 |
+
mask = self.network.mask_dic[area]
|
245 |
+
if mask is None:
|
246 |
+
raise ValueError(f"mask is None for resolution {area}")
|
247 |
+
if len(x.size()) != 4:
|
248 |
+
mask = torch.reshape(mask, (1, -1, 1))
|
249 |
+
return mask
|
250 |
+
|
251 |
+
def regional_forward(self, x):
|
252 |
+
if "attn2_to_out" in self.lora_name:
|
253 |
+
return self.to_out_forward(x)
|
254 |
+
|
255 |
+
if self.network.mask_dic is None: # sub_prompt_index >= 3
|
256 |
+
return self.default_forward(x)
|
257 |
+
|
258 |
+
# apply mask for LoRA result
|
259 |
+
lx = self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
260 |
+
mask = self.get_mask_for_x(lx)
|
261 |
+
# print("regional", self.lora_name, self.network.sub_prompt_index, lx.size(), mask.size())
|
262 |
+
lx = lx * mask
|
263 |
+
|
264 |
+
x = self.org_forward(x)
|
265 |
+
x = x + lx
|
266 |
+
|
267 |
+
if "attn2_to_q" in self.lora_name and self.network.is_last_network:
|
268 |
+
x = self.postp_to_q(x)
|
269 |
+
|
270 |
+
return x
|
271 |
+
|
272 |
+
def postp_to_q(self, x):
|
273 |
+
# repeat x to num_sub_prompts
|
274 |
+
has_real_uncond = x.size()[0] // self.network.batch_size == 3
|
275 |
+
qc = self.network.batch_size # uncond
|
276 |
+
qc += self.network.batch_size * self.network.num_sub_prompts # cond
|
277 |
+
if has_real_uncond:
|
278 |
+
qc += self.network.batch_size # real_uncond
|
279 |
+
|
280 |
+
query = torch.zeros((qc, x.size()[1], x.size()[2]), device=x.device, dtype=x.dtype)
|
281 |
+
query[: self.network.batch_size] = x[: self.network.batch_size]
|
282 |
+
|
283 |
+
for i in range(self.network.batch_size):
|
284 |
+
qi = self.network.batch_size + i * self.network.num_sub_prompts
|
285 |
+
query[qi : qi + self.network.num_sub_prompts] = x[self.network.batch_size + i]
|
286 |
+
|
287 |
+
if has_real_uncond:
|
288 |
+
query[-self.network.batch_size :] = x[-self.network.batch_size :]
|
289 |
+
|
290 |
+
# print("postp_to_q", self.lora_name, x.size(), query.size(), self.network.num_sub_prompts)
|
291 |
+
return query
|
292 |
+
|
293 |
+
def sub_prompt_forward(self, x):
|
294 |
+
if x.size()[0] == self.network.batch_size: # if uncond in text_encoder, do not apply LoRA
|
295 |
+
return self.org_forward(x)
|
296 |
+
|
297 |
+
emb_idx = self.network.sub_prompt_index
|
298 |
+
if not self.text_encoder:
|
299 |
+
emb_idx += self.network.batch_size
|
300 |
+
|
301 |
+
# apply sub prompt of X
|
302 |
+
lx = x[emb_idx :: self.network.num_sub_prompts]
|
303 |
+
lx = self.lora_up(self.lora_down(lx)) * self.multiplier * self.scale
|
304 |
+
|
305 |
+
# print("sub_prompt_forward", self.lora_name, x.size(), lx.size(), emb_idx)
|
306 |
+
|
307 |
+
x = self.org_forward(x)
|
308 |
+
x[emb_idx :: self.network.num_sub_prompts] += lx
|
309 |
+
|
310 |
+
return x
|
311 |
+
|
312 |
+
def to_out_forward(self, x):
|
313 |
+
# print("to_out_forward", self.lora_name, x.size(), self.network.is_last_network)
|
314 |
+
|
315 |
+
if self.network.is_last_network:
|
316 |
+
masks = [None] * self.network.num_sub_prompts
|
317 |
+
self.network.shared[self.lora_name] = (None, masks)
|
318 |
+
else:
|
319 |
+
lx, masks = self.network.shared[self.lora_name]
|
320 |
+
|
321 |
+
# call own LoRA
|
322 |
+
x1 = x[self.network.batch_size + self.network.sub_prompt_index :: self.network.num_sub_prompts]
|
323 |
+
lx1 = self.lora_up(self.lora_down(x1)) * self.multiplier * self.scale
|
324 |
+
|
325 |
+
if self.network.is_last_network:
|
326 |
+
lx = torch.zeros(
|
327 |
+
(self.network.num_sub_prompts * self.network.batch_size, *lx1.size()[1:]), device=lx1.device, dtype=lx1.dtype
|
328 |
+
)
|
329 |
+
self.network.shared[self.lora_name] = (lx, masks)
|
330 |
+
|
331 |
+
# print("to_out_forward", lx.size(), lx1.size(), self.network.sub_prompt_index, self.network.num_sub_prompts)
|
332 |
+
lx[self.network.sub_prompt_index :: self.network.num_sub_prompts] += lx1
|
333 |
+
masks[self.network.sub_prompt_index] = self.get_mask_for_x(lx1)
|
334 |
+
|
335 |
+
# if not last network, return x and masks
|
336 |
+
x = self.org_forward(x)
|
337 |
+
if not self.network.is_last_network:
|
338 |
+
return x
|
339 |
+
|
340 |
+
lx, masks = self.network.shared.pop(self.lora_name)
|
341 |
+
|
342 |
+
# if last network, combine separated x with mask weighted sum
|
343 |
+
has_real_uncond = x.size()[0] // self.network.batch_size == self.network.num_sub_prompts + 2
|
344 |
+
|
345 |
+
out = torch.zeros((self.network.batch_size * (3 if has_real_uncond else 2), *x.size()[1:]), device=x.device, dtype=x.dtype)
|
346 |
+
out[: self.network.batch_size] = x[: self.network.batch_size] # uncond
|
347 |
+
if has_real_uncond:
|
348 |
+
out[-self.network.batch_size :] = x[-self.network.batch_size :] # real_uncond
|
349 |
+
|
350 |
+
# print("to_out_forward", self.lora_name, self.network.sub_prompt_index, self.network.num_sub_prompts)
|
351 |
+
# for i in range(len(masks)):
|
352 |
+
# if masks[i] is None:
|
353 |
+
# masks[i] = torch.zeros_like(masks[-1])
|
354 |
+
|
355 |
+
mask = torch.cat(masks)
|
356 |
+
mask_sum = torch.sum(mask, dim=0) + 1e-4
|
357 |
+
for i in range(self.network.batch_size):
|
358 |
+
# 1枚の画像ごとに処理する
|
359 |
+
lx1 = lx[i * self.network.num_sub_prompts : (i + 1) * self.network.num_sub_prompts]
|
360 |
+
lx1 = lx1 * mask
|
361 |
+
lx1 = torch.sum(lx1, dim=0)
|
362 |
+
|
363 |
+
xi = self.network.batch_size + i * self.network.num_sub_prompts
|
364 |
+
x1 = x[xi : xi + self.network.num_sub_prompts]
|
365 |
+
x1 = x1 * mask
|
366 |
+
x1 = torch.sum(x1, dim=0)
|
367 |
+
x1 = x1 / mask_sum
|
368 |
+
|
369 |
+
x1 = x1 + lx1
|
370 |
+
out[self.network.batch_size + i] = x1
|
371 |
+
|
372 |
+
# print("to_out_forward", x.size(), out.size(), has_real_uncond)
|
373 |
+
return out
|
374 |
+
|
375 |
+
|
376 |
+
def parse_block_lr_kwargs(nw_kwargs):
|
377 |
+
down_lr_weight = nw_kwargs.get("down_lr_weight", None)
|
378 |
+
mid_lr_weight = nw_kwargs.get("mid_lr_weight", None)
|
379 |
+
up_lr_weight = nw_kwargs.get("up_lr_weight", None)
|
380 |
+
|
381 |
+
# 以上のいずれにも設定がない場合は無効としてNoneを返す
|
382 |
+
if down_lr_weight is None and mid_lr_weight is None and up_lr_weight is None:
|
383 |
+
return None, None, None
|
384 |
+
|
385 |
+
# extract learning rate weight for each block
|
386 |
+
if down_lr_weight is not None:
|
387 |
+
# if some parameters are not set, use zero
|
388 |
+
if "," in down_lr_weight:
|
389 |
+
down_lr_weight = [(float(s) if s else 0.0) for s in down_lr_weight.split(",")]
|
390 |
+
|
391 |
+
if mid_lr_weight is not None:
|
392 |
+
mid_lr_weight = float(mid_lr_weight)
|
393 |
+
|
394 |
+
if up_lr_weight is not None:
|
395 |
+
if "," in up_lr_weight:
|
396 |
+
up_lr_weight = [(float(s) if s else 0.0) for s in up_lr_weight.split(",")]
|
397 |
+
|
398 |
+
down_lr_weight, mid_lr_weight, up_lr_weight = get_block_lr_weight(
|
399 |
+
down_lr_weight, mid_lr_weight, up_lr_weight, float(nw_kwargs.get("block_lr_zero_threshold", 0.0))
|
400 |
+
)
|
401 |
+
|
402 |
+
return down_lr_weight, mid_lr_weight, up_lr_weight
|
403 |
+
|
404 |
+
|
405 |
+
def create_network(
|
406 |
+
multiplier: float,
|
407 |
+
network_dim: Optional[int],
|
408 |
+
network_alpha: Optional[float],
|
409 |
+
unet,
|
410 |
+
neuron_dropout: Optional[float] = None,
|
411 |
+
**kwargs,
|
412 |
+
):
|
413 |
+
if network_dim is None:
|
414 |
+
network_dim = 4 # default
|
415 |
+
if network_alpha is None:
|
416 |
+
network_alpha = 1.0
|
417 |
+
|
418 |
+
# extract dim/alpha for conv2d, and block dim
|
419 |
+
conv_dim = kwargs.get("conv_dim", None)
|
420 |
+
conv_alpha = kwargs.get("conv_alpha", None)
|
421 |
+
if conv_dim is not None:
|
422 |
+
conv_dim = int(conv_dim)
|
423 |
+
if conv_alpha is None:
|
424 |
+
conv_alpha = 1.0
|
425 |
+
else:
|
426 |
+
conv_alpha = float(conv_alpha)
|
427 |
+
|
428 |
+
# block dim/alpha/lr
|
429 |
+
block_dims = kwargs.get("block_dims", None)
|
430 |
+
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
|
431 |
+
|
432 |
+
# 以上のいずれかに指定があればblockごとのdim(rank)を有効にする
|
433 |
+
if block_dims is not None or down_lr_weight is not None or mid_lr_weight is not None or up_lr_weight is not None:
|
434 |
+
block_alphas = kwargs.get("block_alphas", None)
|
435 |
+
conv_block_dims = kwargs.get("conv_block_dims", None)
|
436 |
+
conv_block_alphas = kwargs.get("conv_block_alphas", None)
|
437 |
+
|
438 |
+
block_dims, block_alphas, conv_block_dims, conv_block_alphas = get_block_dims_and_alphas(
|
439 |
+
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
|
440 |
+
)
|
441 |
+
|
442 |
+
# remove block dim/alpha without learning rate
|
443 |
+
block_dims, block_alphas, conv_block_dims, conv_block_alphas = remove_block_dims_and_alphas(
|
444 |
+
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
|
445 |
+
)
|
446 |
+
|
447 |
+
else:
|
448 |
+
block_alphas = None
|
449 |
+
conv_block_dims = None
|
450 |
+
conv_block_alphas = None
|
451 |
+
|
452 |
+
# rank/module dropout
|
453 |
+
rank_dropout = kwargs.get("rank_dropout", None)
|
454 |
+
if rank_dropout is not None:
|
455 |
+
rank_dropout = float(rank_dropout)
|
456 |
+
module_dropout = kwargs.get("module_dropout", None)
|
457 |
+
if module_dropout is not None:
|
458 |
+
module_dropout = float(module_dropout)
|
459 |
+
|
460 |
+
# すごく引数が多いな ( ^ω^)・・・
|
461 |
+
network = LoRANetwork(
|
462 |
+
unet,
|
463 |
+
multiplier=multiplier,
|
464 |
+
lora_dim=network_dim,
|
465 |
+
alpha=network_alpha,
|
466 |
+
dropout=neuron_dropout,
|
467 |
+
rank_dropout=rank_dropout,
|
468 |
+
module_dropout=module_dropout,
|
469 |
+
conv_lora_dim=conv_dim,
|
470 |
+
conv_alpha=conv_alpha,
|
471 |
+
block_dims=block_dims,
|
472 |
+
block_alphas=block_alphas,
|
473 |
+
conv_block_dims=conv_block_dims,
|
474 |
+
conv_block_alphas=conv_block_alphas,
|
475 |
+
varbose=True,
|
476 |
+
)
|
477 |
+
|
478 |
+
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
|
479 |
+
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
|
480 |
+
|
481 |
+
return network
|
482 |
+
|
483 |
+
|
484 |
+
# このメソッドは外部から呼び出される可能性を考慮しておく
|
485 |
+
# network_dim, network_alpha にはデフォルト値が入っている。
|
486 |
+
# block_dims, block_alphas は両方ともNoneまたは両方とも値が入っている
|
487 |
+
# conv_dim, conv_alpha は両方ともNoneまたは両方とも値が入っている
|
488 |
+
def get_block_dims_and_alphas(
|
489 |
+
block_dims, block_alphas, network_dim, network_alpha, conv_block_dims, conv_block_alphas, conv_dim, conv_alpha
|
490 |
+
):
|
491 |
+
num_total_blocks = LoRANetwork.NUM_OF_BLOCKS * 2 + 1
|
492 |
+
|
493 |
+
def parse_ints(s):
|
494 |
+
return [int(i) for i in s.split(",")]
|
495 |
+
|
496 |
+
def parse_floats(s):
|
497 |
+
return [float(i) for i in s.split(",")]
|
498 |
+
|
499 |
+
# block_dimsとblock_alphasをパースする。必ず値が入る
|
500 |
+
if block_dims is not None:
|
501 |
+
block_dims = parse_ints(block_dims)
|
502 |
+
assert (
|
503 |
+
len(block_dims) == num_total_blocks
|
504 |
+
), f"block_dims must have {num_total_blocks} elements / block_dimsは{num_total_blocks}個指定してください"
|
505 |
+
else:
|
506 |
+
print(f"block_dims is not specified. all dims are set to {network_dim} / block_dimsが指定されていません。すべてのdimは{network_dim}になります")
|
507 |
+
block_dims = [network_dim] * num_total_blocks
|
508 |
+
|
509 |
+
if block_alphas is not None:
|
510 |
+
block_alphas = parse_floats(block_alphas)
|
511 |
+
assert (
|
512 |
+
len(block_alphas) == num_total_blocks
|
513 |
+
), f"block_alphas must have {num_total_blocks} elements / block_alphasは{num_total_blocks}個指定してください"
|
514 |
+
else:
|
515 |
+
print(
|
516 |
+
f"block_alphas is not specified. all alphas are set to {network_alpha} / block_alphasが指定されていません。すべてのalphaは{network_alpha}になります"
|
517 |
+
)
|
518 |
+
block_alphas = [network_alpha] * num_total_blocks
|
519 |
+
|
520 |
+
# conv_block_dimsとconv_block_alphasを、指定がある場合のみパースする。指定がなければconv_dimとconv_alphaを使う
|
521 |
+
if conv_block_dims is not None:
|
522 |
+
conv_block_dims = parse_ints(conv_block_dims)
|
523 |
+
assert (
|
524 |
+
len(conv_block_dims) == num_total_blocks
|
525 |
+
), f"conv_block_dims must have {num_total_blocks} elements / conv_block_dimsは{num_total_blocks}個指定してください"
|
526 |
+
|
527 |
+
if conv_block_alphas is not None:
|
528 |
+
conv_block_alphas = parse_floats(conv_block_alphas)
|
529 |
+
assert (
|
530 |
+
len(conv_block_alphas) == num_total_blocks
|
531 |
+
), f"conv_block_alphas must have {num_total_blocks} elements / conv_block_alphasは{num_total_blocks}個指定してください"
|
532 |
+
else:
|
533 |
+
if conv_alpha is None:
|
534 |
+
conv_alpha = 1.0
|
535 |
+
print(
|
536 |
+
f"conv_block_alphas is not specified. all alphas are set to {conv_alpha} / conv_block_alphasが指定されていません。すべてのalphaは{conv_alpha}になります"
|
537 |
+
)
|
538 |
+
conv_block_alphas = [conv_alpha] * num_total_blocks
|
539 |
+
else:
|
540 |
+
if conv_dim is not None:
|
541 |
+
print(
|
542 |
+
f"conv_dim/alpha for all blocks are set to {conv_dim} and {conv_alpha} / すべてのブロックのconv_dimとalphaは{conv_dim}および{conv_alpha}になります"
|
543 |
+
)
|
544 |
+
conv_block_dims = [conv_dim] * num_total_blocks
|
545 |
+
conv_block_alphas = [conv_alpha] * num_total_blocks
|
546 |
+
else:
|
547 |
+
conv_block_dims = None
|
548 |
+
conv_block_alphas = None
|
549 |
+
|
550 |
+
return block_dims, block_alphas, conv_block_dims, conv_block_alphas
|
551 |
+
|
552 |
+
|
553 |
+
# 層別学習率用に層ごとの学習率に対する倍率を定義する、外部から呼び出される可能性を考慮しておく
|
554 |
+
def get_block_lr_weight(
|
555 |
+
down_lr_weight, mid_lr_weight, up_lr_weight, zero_threshold
|
556 |
+
) -> Tuple[List[float], List[float], List[float]]:
|
557 |
+
# パラメータ未指定時は何もせず、今までと同じ動作とする
|
558 |
+
if up_lr_weight is None and mid_lr_weight is None and down_lr_weight is None:
|
559 |
+
return None, None, None
|
560 |
+
|
561 |
+
max_len = LoRANetwork.NUM_OF_BLOCKS # フルモデル相当でのup,downの層の数
|
562 |
+
|
563 |
+
def get_list(name_with_suffix) -> List[float]:
|
564 |
+
import math
|
565 |
+
|
566 |
+
tokens = name_with_suffix.split("+")
|
567 |
+
name = tokens[0]
|
568 |
+
base_lr = float(tokens[1]) if len(tokens) > 1 else 0.0
|
569 |
+
|
570 |
+
if name == "cosine":
|
571 |
+
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in reversed(range(max_len))]
|
572 |
+
elif name == "sine":
|
573 |
+
return [math.sin(math.pi * (i / (max_len - 1)) / 2) + base_lr for i in range(max_len)]
|
574 |
+
elif name == "linear":
|
575 |
+
return [i / (max_len - 1) + base_lr for i in range(max_len)]
|
576 |
+
elif name == "reverse_linear":
|
577 |
+
return [i / (max_len - 1) + base_lr for i in reversed(range(max_len))]
|
578 |
+
elif name == "zeros":
|
579 |
+
return [0.0 + base_lr] * max_len
|
580 |
+
else:
|
581 |
+
print(
|
582 |
+
"Unknown lr_weight argument %s is used. Valid arguments: / 不明なlr_weightの引数 %s が使われました。有効な引数:\n\tcosine, sine, linear, reverse_linear, zeros"
|
583 |
+
% (name)
|
584 |
+
)
|
585 |
+
return None
|
586 |
+
|
587 |
+
if type(down_lr_weight) == str:
|
588 |
+
down_lr_weight = get_list(down_lr_weight)
|
589 |
+
if type(up_lr_weight) == str:
|
590 |
+
up_lr_weight = get_list(up_lr_weight)
|
591 |
+
|
592 |
+
if (up_lr_weight != None and len(up_lr_weight) > max_len) or (down_lr_weight != None and len(down_lr_weight) > max_len):
|
593 |
+
print("down_weight or up_weight is too long. Parameters after %d-th are ignored." % max_len)
|
594 |
+
print("down_weightもしくはup_weightが長すぎます。%d個目以降のパラメータは無視されます。" % max_len)
|
595 |
+
up_lr_weight = up_lr_weight[:max_len]
|
596 |
+
down_lr_weight = down_lr_weight[:max_len]
|
597 |
+
|
598 |
+
if (up_lr_weight != None and len(up_lr_weight) < max_len) or (down_lr_weight != None and len(down_lr_weight) < max_len):
|
599 |
+
print("down_weight or up_weight is too short. Parameters after %d-th are filled with 1." % max_len)
|
600 |
+
print("down_weightもしくはup_weightが短すぎます。%d個目までの不足したパラメータは1で補われます。" % max_len)
|
601 |
+
|
602 |
+
if down_lr_weight != None and len(down_lr_weight) < max_len:
|
603 |
+
down_lr_weight = down_lr_weight + [1.0] * (max_len - len(down_lr_weight))
|
604 |
+
if up_lr_weight != None and len(up_lr_weight) < max_len:
|
605 |
+
up_lr_weight = up_lr_weight + [1.0] * (max_len - len(up_lr_weight))
|
606 |
+
|
607 |
+
if (up_lr_weight != None) or (mid_lr_weight != None) or (down_lr_weight != None):
|
608 |
+
print("apply block learning rate / 階層別学習率を適用します。")
|
609 |
+
if down_lr_weight != None:
|
610 |
+
down_lr_weight = [w if w > zero_threshold else 0 for w in down_lr_weight]
|
611 |
+
print("down_lr_weight (shallower -> deeper, 浅い層->深い層):", down_lr_weight)
|
612 |
+
else:
|
613 |
+
print("down_lr_weight: all 1.0, すべて1.0")
|
614 |
+
|
615 |
+
if mid_lr_weight != None:
|
616 |
+
mid_lr_weight = mid_lr_weight if mid_lr_weight > zero_threshold else 0
|
617 |
+
print("mid_lr_weight:", mid_lr_weight)
|
618 |
+
else:
|
619 |
+
print("mid_lr_weight: 1.0")
|
620 |
+
|
621 |
+
if up_lr_weight != None:
|
622 |
+
up_lr_weight = [w if w > zero_threshold else 0 for w in up_lr_weight]
|
623 |
+
print("up_lr_weight (deeper -> shallower, 深い層->浅い層):", up_lr_weight)
|
624 |
+
else:
|
625 |
+
print("up_lr_weight: all 1.0, すべて1.0")
|
626 |
+
|
627 |
+
return down_lr_weight, mid_lr_weight, up_lr_weight
|
628 |
+
|
629 |
+
|
630 |
+
# lr_weightが0のblockをblock_dimsから除外する、外部から呼び出す可能性を考慮しておく
|
631 |
+
def remove_block_dims_and_alphas(
|
632 |
+
block_dims, block_alphas, conv_block_dims, conv_block_alphas, down_lr_weight, mid_lr_weight, up_lr_weight
|
633 |
+
):
|
634 |
+
# set 0 to block dim without learning rate to remove the block
|
635 |
+
if down_lr_weight != None:
|
636 |
+
for i, lr in enumerate(down_lr_weight):
|
637 |
+
if lr == 0:
|
638 |
+
block_dims[i] = 0
|
639 |
+
if conv_block_dims is not None:
|
640 |
+
conv_block_dims[i] = 0
|
641 |
+
if mid_lr_weight != None:
|
642 |
+
if mid_lr_weight == 0:
|
643 |
+
block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
|
644 |
+
if conv_block_dims is not None:
|
645 |
+
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS] = 0
|
646 |
+
if up_lr_weight != None:
|
647 |
+
for i, lr in enumerate(up_lr_weight):
|
648 |
+
if lr == 0:
|
649 |
+
block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
|
650 |
+
if conv_block_dims is not None:
|
651 |
+
conv_block_dims[LoRANetwork.NUM_OF_BLOCKS + 1 + i] = 0
|
652 |
+
|
653 |
+
return block_dims, block_alphas, conv_block_dims, conv_block_alphas
|
654 |
+
|
655 |
+
|
656 |
+
# 外部から呼び出す可能性を考慮しておく
|
657 |
+
def get_block_index(lora_name: str) -> int:
|
658 |
+
block_idx = -1 # invalid lora name
|
659 |
+
|
660 |
+
m = RE_UPDOWN.search(lora_name)
|
661 |
+
if m:
|
662 |
+
g = m.groups()
|
663 |
+
i = int(g[1])
|
664 |
+
j = int(g[3])
|
665 |
+
if g[2] == "resnets":
|
666 |
+
idx = 3 * i + j
|
667 |
+
elif g[2] == "attentions":
|
668 |
+
idx = 3 * i + j
|
669 |
+
elif g[2] == "upsamplers" or g[2] == "downsamplers":
|
670 |
+
idx = 3 * i + 2
|
671 |
+
|
672 |
+
if g[0] == "down":
|
673 |
+
block_idx = 1 + idx # 0に該当するLoRAは存在しない
|
674 |
+
elif g[0] == "up":
|
675 |
+
block_idx = LoRANetwork.NUM_OF_BLOCKS + 1 + idx
|
676 |
+
|
677 |
+
elif "mid_block_" in lora_name:
|
678 |
+
block_idx = LoRANetwork.NUM_OF_BLOCKS # idx=12
|
679 |
+
|
680 |
+
return block_idx
|
681 |
+
|
682 |
+
|
683 |
+
# Create network from weights for inference, weights are not loaded here (because can be merged)
|
684 |
+
def create_network_from_weights(multiplier, file, vae, text_encoder, unet, weights_sd=None, for_inference=False, **kwargs):
|
685 |
+
if weights_sd is None:
|
686 |
+
if os.path.splitext(file)[1] == ".safetensors":
|
687 |
+
from safetensors.torch import load_file, safe_open
|
688 |
+
|
689 |
+
weights_sd = load_file(file)
|
690 |
+
else:
|
691 |
+
weights_sd = torch.load(file, map_location="cpu")
|
692 |
+
|
693 |
+
# get dim/alpha mapping
|
694 |
+
modules_dim = {}
|
695 |
+
modules_alpha = {}
|
696 |
+
for key, value in weights_sd.items():
|
697 |
+
if "." not in key:
|
698 |
+
continue
|
699 |
+
|
700 |
+
lora_name = key.split(".")[0]
|
701 |
+
if "alpha" in key:
|
702 |
+
modules_alpha[lora_name] = value
|
703 |
+
elif "lora_down" in key:
|
704 |
+
dim = value.size()[0]
|
705 |
+
modules_dim[lora_name] = dim
|
706 |
+
# print(lora_name, value.size(), dim)
|
707 |
+
|
708 |
+
# support old LoRA without alpha
|
709 |
+
for key in modules_dim.keys():
|
710 |
+
if key not in modules_alpha:
|
711 |
+
modules_alpha[key] = modules_dim[key]
|
712 |
+
|
713 |
+
module_class = LoRAInfModule if for_inference else LoRAModule
|
714 |
+
|
715 |
+
network = LoRANetwork(
|
716 |
+
text_encoder, unet, multiplier=multiplier, modules_dim=modules_dim, modules_alpha=modules_alpha, module_class=module_class
|
717 |
+
)
|
718 |
+
|
719 |
+
# block lr
|
720 |
+
down_lr_weight, mid_lr_weight, up_lr_weight = parse_block_lr_kwargs(kwargs)
|
721 |
+
if up_lr_weight is not None or mid_lr_weight is not None or down_lr_weight is not None:
|
722 |
+
network.set_block_lr_weight(up_lr_weight, mid_lr_weight, down_lr_weight)
|
723 |
+
|
724 |
+
return network, weights_sd
|
725 |
+
|
726 |
+
|
727 |
+
class LoRANetwork(torch.nn.Module):
|
728 |
+
NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数
|
729 |
+
|
730 |
+
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
|
731 |
+
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
|
732 |
+
LORA_PREFIX_UNET = "lora_unet"
|
733 |
+
|
734 |
+
def __init__(
|
735 |
+
self,
|
736 |
+
unet,
|
737 |
+
multiplier: float = 1.0,
|
738 |
+
lora_dim: int = 4,
|
739 |
+
alpha: float = 1,
|
740 |
+
dropout: Optional[float] = None,
|
741 |
+
rank_dropout: Optional[float] = None,
|
742 |
+
module_dropout: Optional[float] = None,
|
743 |
+
conv_lora_dim: Optional[int] = None,
|
744 |
+
conv_alpha: Optional[float] = None,
|
745 |
+
block_dims: Optional[List[int]] = None,
|
746 |
+
block_alphas: Optional[List[float]] = None,
|
747 |
+
conv_block_dims: Optional[List[int]] = None,
|
748 |
+
conv_block_alphas: Optional[List[float]] = None,
|
749 |
+
modules_dim: Optional[Dict[str, int]] = None,
|
750 |
+
modules_alpha: Optional[Dict[str, int]] = None,
|
751 |
+
module_class: Type[object] = LoRAModule,
|
752 |
+
varbose: Optional[bool] = False,
|
753 |
+
) -> None:
|
754 |
+
"""
|
755 |
+
LoRA network: すごく引数が多いが、パターンは以下の通り
|
756 |
+
1. lora_dimとalphaを指定
|
757 |
+
2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定
|
758 |
+
3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない
|
759 |
+
4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する
|
760 |
+
5. modules_dimとmodules_alphaを指定 (推論用)
|
761 |
+
"""
|
762 |
+
super().__init__()
|
763 |
+
self.multiplier = multiplier
|
764 |
+
|
765 |
+
self.lora_dim = lora_dim
|
766 |
+
self.alpha = alpha
|
767 |
+
self.conv_lora_dim = conv_lora_dim
|
768 |
+
self.conv_alpha = conv_alpha
|
769 |
+
self.dropout = dropout
|
770 |
+
self.rank_dropout = rank_dropout
|
771 |
+
self.module_dropout = module_dropout
|
772 |
+
|
773 |
+
|
774 |
+
# create module instances
|
775 |
+
def create_modules(
|
776 |
+
is_unet: bool,
|
777 |
+
root_module: torch.nn.Module,
|
778 |
+
target_replace_modules: List[torch.nn.Module],
|
779 |
+
) -> List[LoRAModule]:
|
780 |
+
prefix = (
|
781 |
+
self.LORA_PREFIX_UNET
|
782 |
+
)
|
783 |
+
loras = []
|
784 |
+
skipped = []
|
785 |
+
for name, module in root_module.named_modules():
|
786 |
+
if module.__class__.__name__ in target_replace_modules:
|
787 |
+
for child_name, child_module in module.named_modules():
|
788 |
+
is_linear = child_module.__class__.__name__ == "Linear"
|
789 |
+
is_conv2d = child_module.__class__.__name__ == "Conv2d"
|
790 |
+
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
|
791 |
+
|
792 |
+
if is_linear or is_conv2d:
|
793 |
+
lora_name = prefix + "." + name + "." + child_name
|
794 |
+
lora_name = lora_name.replace(".", "_")
|
795 |
+
|
796 |
+
dim = None
|
797 |
+
alpha = None
|
798 |
+
|
799 |
+
if modules_dim is not None:
|
800 |
+
# モジュール指定あり
|
801 |
+
if lora_name in modules_dim:
|
802 |
+
dim = modules_dim[lora_name]
|
803 |
+
alpha = modules_alpha[lora_name]
|
804 |
+
elif is_unet and block_dims is not None:
|
805 |
+
# U-Netでblock_dims指定あり
|
806 |
+
block_idx = get_block_index(lora_name)
|
807 |
+
if is_linear or is_conv2d_1x1:
|
808 |
+
dim = block_dims[block_idx]
|
809 |
+
alpha = block_alphas[block_idx]
|
810 |
+
elif conv_block_dims is not None:
|
811 |
+
dim = conv_block_dims[block_idx]
|
812 |
+
alpha = conv_block_alphas[block_idx]
|
813 |
+
else:
|
814 |
+
# 通常、すべて対象とする
|
815 |
+
if is_linear or is_conv2d_1x1:
|
816 |
+
dim = self.lora_dim
|
817 |
+
alpha = self.alpha
|
818 |
+
elif self.conv_lora_dim is not None:
|
819 |
+
dim = self.conv_lora_dim
|
820 |
+
alpha = self.conv_alpha
|
821 |
+
|
822 |
+
if dim is None or dim == 0:
|
823 |
+
# skipした情報を出力
|
824 |
+
if is_linear or is_conv2d_1x1 or (self.conv_lora_dim is not None or conv_block_dims is not None):
|
825 |
+
skipped.append(lora_name)
|
826 |
+
continue
|
827 |
+
|
828 |
+
lora = module_class(
|
829 |
+
lora_name,
|
830 |
+
child_module,
|
831 |
+
self.multiplier,
|
832 |
+
dim,
|
833 |
+
alpha,
|
834 |
+
dropout=dropout,
|
835 |
+
rank_dropout=rank_dropout,
|
836 |
+
module_dropout=module_dropout,
|
837 |
+
)
|
838 |
+
loras.append(lora)
|
839 |
+
return loras, skipped
|
840 |
+
|
841 |
+
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
|
842 |
+
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
|
843 |
+
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None:
|
844 |
+
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
|
845 |
+
|
846 |
+
self.unet_loras, skipped_un = create_modules(True, unet, target_modules)
|
847 |
+
|
848 |
+
|
849 |
+
skipped = skipped_un
|
850 |
+
|
851 |
+
self.up_lr_weight: List[float] = None
|
852 |
+
self.down_lr_weight: List[float] = None
|
853 |
+
self.mid_lr_weight: float = None
|
854 |
+
self.block_lr = False
|
855 |
+
|
856 |
+
# assertion
|
857 |
+
names = set()
|
858 |
+
for lora in self.unet_loras:
|
859 |
+
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
|
860 |
+
names.add(lora.lora_name)
|
861 |
+
|
862 |
+
def set_multiplier(self, multiplier):
|
863 |
+
self.multiplier = multiplier
|
864 |
+
for lora in self.unet_loras:
|
865 |
+
lora.multiplier = self.multiplier
|
866 |
+
|
867 |
+
def load_weights(self, file):
|
868 |
+
if os.path.splitext(file)[1] == ".safetensors":
|
869 |
+
from safetensors.torch import load_file
|
870 |
+
|
871 |
+
weights_sd = load_file(file)
|
872 |
+
else:
|
873 |
+
weights_sd = torch.load(file, map_location="cpu")
|
874 |
+
|
875 |
+
info = self.load_state_dict(weights_sd, False)
|
876 |
+
return info
|
877 |
+
|
878 |
+
def apply_to(self, unet, apply_unet=True):
|
879 |
+
for lora in self.unet_loras:
|
880 |
+
lora.apply_to()
|
881 |
+
self.add_module(lora.lora_name, lora)
|
882 |
+
|
883 |
+
# マージできるかどうかを返す
|
884 |
+
def is_mergeable(self):
|
885 |
+
return True
|
886 |
+
|
887 |
+
# TODO refactor to common function with apply_to
|
888 |
+
def merge_to(self, text_encoder, unet, weights_sd, dtype, device):
|
889 |
+
apply_text_encoder = apply_unet = False
|
890 |
+
for key in weights_sd.keys():
|
891 |
+
if key.startswith(LoRANetwork.LORA_PREFIX_TEXT_ENCODER):
|
892 |
+
apply_text_encoder = True
|
893 |
+
elif key.startswith(LoRANetwork.LORA_PREFIX_UNET):
|
894 |
+
apply_unet = True
|
895 |
+
|
896 |
+
|
897 |
+
for lora in self.unet_loras:
|
898 |
+
sd_for_lora = {}
|
899 |
+
for key in weights_sd.keys():
|
900 |
+
if key.startswith(lora.lora_name):
|
901 |
+
sd_for_lora[key[len(lora.lora_name) + 1 :]] = weights_sd[key]
|
902 |
+
lora.merge_to(sd_for_lora, dtype, device)
|
903 |
+
|
904 |
+
|
905 |
+
def set_block_lr_weight(
|
906 |
+
self,
|
907 |
+
up_lr_weight: List[float] = None,
|
908 |
+
mid_lr_weight: float = None,
|
909 |
+
down_lr_weight: List[float] = None,
|
910 |
+
):
|
911 |
+
self.block_lr = True
|
912 |
+
self.down_lr_weight = down_lr_weight
|
913 |
+
self.mid_lr_weight = mid_lr_weight
|
914 |
+
self.up_lr_weight = up_lr_weight
|
915 |
+
|
916 |
+
def get_lr_weight(self, lora: LoRAModule) -> float:
|
917 |
+
lr_weight = 1.0
|
918 |
+
block_idx = get_block_index(lora.lora_name)
|
919 |
+
if block_idx < 0:
|
920 |
+
return lr_weight
|
921 |
+
|
922 |
+
if block_idx < LoRANetwork.NUM_OF_BLOCKS:
|
923 |
+
if self.down_lr_weight != None:
|
924 |
+
lr_weight = self.down_lr_weight[block_idx]
|
925 |
+
elif block_idx == LoRANetwork.NUM_OF_BLOCKS:
|
926 |
+
if self.mid_lr_weight != None:
|
927 |
+
lr_weight = self.mid_lr_weight
|
928 |
+
elif block_idx > LoRANetwork.NUM_OF_BLOCKS:
|
929 |
+
if self.up_lr_weight != None:
|
930 |
+
lr_weight = self.up_lr_weight[block_idx - LoRANetwork.NUM_OF_BLOCKS - 1]
|
931 |
+
|
932 |
+
return lr_weight
|
933 |
+
|
934 |
+
def prepare_optimizer_params(self, unet_lr):
|
935 |
+
self.requires_grad_(True)
|
936 |
+
all_params = []
|
937 |
+
|
938 |
+
def enumerate_params(loras):
|
939 |
+
params = []
|
940 |
+
for lora in loras:
|
941 |
+
params.extend(lora.parameters())
|
942 |
+
return params
|
943 |
+
|
944 |
+
|
945 |
+
if self.unet_loras:
|
946 |
+
if self.block_lr:
|
947 |
+
# 学習率のグラフをblockごとにしたいので、blockごとにloraを分類
|
948 |
+
block_idx_to_lora = {}
|
949 |
+
for lora in self.unet_loras:
|
950 |
+
idx = get_block_index(lora.lora_name)
|
951 |
+
if idx not in block_idx_to_lora:
|
952 |
+
block_idx_to_lora[idx] = []
|
953 |
+
block_idx_to_lora[idx].append(lora)
|
954 |
+
|
955 |
+
# blockごとにパラメータを設定する
|
956 |
+
for idx, block_loras in block_idx_to_lora.items():
|
957 |
+
param_data = {"params": enumerate_params(block_loras)}
|
958 |
+
|
959 |
+
if unet_lr is not None:
|
960 |
+
param_data["lr"] = unet_lr * self.get_lr_weight(block_loras[0])
|
961 |
+
if ("lr" in param_data) and (param_data["lr"] == 0):
|
962 |
+
continue
|
963 |
+
all_params.append(param_data)
|
964 |
+
|
965 |
+
else:
|
966 |
+
param_data = {"params": enumerate_params(self.unet_loras)}
|
967 |
+
if unet_lr is not None:
|
968 |
+
param_data["lr"] = unet_lr
|
969 |
+
all_params.append(param_data)
|
970 |
+
|
971 |
+
return all_params
|
972 |
+
|
973 |
+
def enable_gradient_checkpointing(self):
|
974 |
+
# not supported
|
975 |
+
pass
|
976 |
+
|
977 |
+
def prepare_grad_etc(self, unet):
|
978 |
+
self.requires_grad_(True)
|
979 |
+
|
980 |
+
def on_epoch_start(self, unet):
|
981 |
+
self.train()
|
982 |
+
|
983 |
+
def get_trainable_params(self):
|
984 |
+
return self.parameters()
|
985 |
+
|
986 |
+
def save_weights(self, file, dtype, metadata):
|
987 |
+
if metadata is not None and len(metadata) == 0:
|
988 |
+
metadata = None
|
989 |
+
|
990 |
+
state_dict = self.state_dict()
|
991 |
+
|
992 |
+
if dtype is not None:
|
993 |
+
for key in list(state_dict.keys()):
|
994 |
+
v = state_dict[key]
|
995 |
+
v = v.detach().clone().to("cpu").to(dtype)
|
996 |
+
state_dict[key] = v
|
997 |
+
|
998 |
+
if os.path.splitext(file)[1] == ".safetensors":
|
999 |
+
from safetensors.torch import save_file
|
1000 |
+
|
1001 |
+
if metadata is None:
|
1002 |
+
metadata = {}
|
1003 |
+
save_file(state_dict, file, metadata)
|
1004 |
+
else:
|
1005 |
+
torch.save(state_dict, file)
|
1006 |
+
|
1007 |
+
# mask is a tensor with values from 0 to 1
|
1008 |
+
def set_region(self, sub_prompt_index, is_last_network, mask):
|
1009 |
+
if mask.max() == 0:
|
1010 |
+
mask = torch.ones_like(mask)
|
1011 |
+
|
1012 |
+
self.mask = mask
|
1013 |
+
self.sub_prompt_index = sub_prompt_index
|
1014 |
+
self.is_last_network = is_last_network
|
1015 |
+
|
1016 |
+
for lora in self.unet_loras:
|
1017 |
+
lora.set_network(self)
|
1018 |
+
|
1019 |
+
def set_current_generation(self, batch_size, num_sub_prompts, width, height, shared):
|
1020 |
+
self.batch_size = batch_size
|
1021 |
+
self.num_sub_prompts = num_sub_prompts
|
1022 |
+
self.current_size = (height, width)
|
1023 |
+
self.shared = shared
|
1024 |
+
|
1025 |
+
# create masks
|
1026 |
+
mask = self.mask
|
1027 |
+
mask_dic = {}
|
1028 |
+
mask = mask.unsqueeze(0).unsqueeze(1) # b(1),c(1),h,w
|
1029 |
+
ref_weight = self.text_encoder_loras[0].lora_down.weight if self.text_encoder_loras else self.unet_loras[0].lora_down.weight
|
1030 |
+
dtype = ref_weight.dtype
|
1031 |
+
device = ref_weight.device
|
1032 |
+
|
1033 |
+
def resize_add(mh, mw):
|
1034 |
+
# print(mh, mw, mh * mw)
|
1035 |
+
m = torch.nn.functional.interpolate(mask, (mh, mw), mode="bilinear") # doesn't work in bf16
|
1036 |
+
m = m.to(device, dtype=dtype)
|
1037 |
+
mask_dic[mh * mw] = m
|
1038 |
+
|
1039 |
+
h = height // 8
|
1040 |
+
w = width // 8
|
1041 |
+
for _ in range(4):
|
1042 |
+
resize_add(h, w)
|
1043 |
+
if h % 2 == 1 or w % 2 == 1: # add extra shape if h/w is not divisible by 2
|
1044 |
+
resize_add(h + h % 2, w + w % 2)
|
1045 |
+
h = (h + 1) // 2
|
1046 |
+
w = (w + 1) // 2
|
1047 |
+
|
1048 |
+
self.mask_dic = mask_dic
|
1049 |
+
|
1050 |
+
def backup_weights(self):
|
1051 |
+
# 重みのバックアップを行う
|
1052 |
+
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
|
1053 |
+
for lora in loras:
|
1054 |
+
org_module = lora.org_module_ref[0]
|
1055 |
+
if not hasattr(org_module, "_lora_org_weight"):
|
1056 |
+
sd = org_module.state_dict()
|
1057 |
+
org_module._lora_org_weight = sd["weight"].detach().clone()
|
1058 |
+
org_module._lora_restored = True
|
1059 |
+
|
1060 |
+
def restore_weights(self):
|
1061 |
+
# 重みのリストアを行う
|
1062 |
+
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
|
1063 |
+
for lora in loras:
|
1064 |
+
org_module = lora.org_module_ref[0]
|
1065 |
+
if not org_module._lora_restored:
|
1066 |
+
sd = org_module.state_dict()
|
1067 |
+
sd["weight"] = org_module._lora_org_weight
|
1068 |
+
org_module.load_state_dict(sd)
|
1069 |
+
org_module._lora_restored = True
|
1070 |
+
|
1071 |
+
def pre_calculation(self):
|
1072 |
+
# 事前計算を行う
|
1073 |
+
loras: List[LoRAInfModule] = self.text_encoder_loras + self.unet_loras
|
1074 |
+
for lora in loras:
|
1075 |
+
org_module = lora.org_module_ref[0]
|
1076 |
+
sd = org_module.state_dict()
|
1077 |
+
|
1078 |
+
org_weight = sd["weight"]
|
1079 |
+
lora_weight = lora.get_weight().to(org_weight.device, dtype=org_weight.dtype)
|
1080 |
+
sd["weight"] = org_weight + lora_weight
|
1081 |
+
assert sd["weight"].shape == org_weight.shape
|
1082 |
+
org_module.load_state_dict(sd)
|
1083 |
+
|
1084 |
+
org_module._lora_restored = False
|
1085 |
+
lora.enabled = False
|
1086 |
+
|
1087 |
+
def apply_max_norm_regularization(self, max_norm_value, device):
|
1088 |
+
downkeys = []
|
1089 |
+
upkeys = []
|
1090 |
+
alphakeys = []
|
1091 |
+
norms = []
|
1092 |
+
keys_scaled = 0
|
1093 |
+
|
1094 |
+
state_dict = self.state_dict()
|
1095 |
+
for key in state_dict.keys():
|
1096 |
+
if "lora_down" in key and "weight" in key:
|
1097 |
+
downkeys.append(key)
|
1098 |
+
upkeys.append(key.replace("lora_down", "lora_up"))
|
1099 |
+
alphakeys.append(key.replace("lora_down.weight", "alpha"))
|
1100 |
+
|
1101 |
+
for i in range(len(downkeys)):
|
1102 |
+
down = state_dict[downkeys[i]].to(device)
|
1103 |
+
up = state_dict[upkeys[i]].to(device)
|
1104 |
+
alpha = state_dict[alphakeys[i]].to(device)
|
1105 |
+
dim = down.shape[0]
|
1106 |
+
scale = alpha / dim
|
1107 |
+
|
1108 |
+
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
|
1109 |
+
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
1110 |
+
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
|
1111 |
+
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
|
1112 |
+
else:
|
1113 |
+
updown = up @ down
|
1114 |
+
|
1115 |
+
updown *= scale
|
1116 |
+
|
1117 |
+
norm = updown.norm().clamp(min=max_norm_value / 2)
|
1118 |
+
desired = torch.clamp(norm, max=max_norm_value)
|
1119 |
+
ratio = desired.cpu() / norm.cpu()
|
1120 |
+
sqrt_ratio = ratio**0.5
|
1121 |
+
if ratio != 1:
|
1122 |
+
keys_scaled += 1
|
1123 |
+
state_dict[upkeys[i]] *= sqrt_ratio
|
1124 |
+
state_dict[downkeys[i]] *= sqrt_ratio
|
1125 |
+
scalednorm = updown.norm() * ratio
|
1126 |
+
norms.append(scalednorm.item())
|
1127 |
+
|
1128 |
+
return keys_scaled, sum(norms) / len(norms), max(norms)
|
mainrunpodA1111.py
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from IPython.display import clear_output
|
3 |
+
from subprocess import call, getoutput, Popen, run
|
4 |
+
import time
|
5 |
+
import ipywidgets as widgets
|
6 |
+
import requests
|
7 |
+
import sys
|
8 |
+
import fileinput
|
9 |
+
from torch.hub import download_url_to_file
|
10 |
+
from urllib.parse import urlparse, parse_qs, unquote
|
11 |
+
import re
|
12 |
+
import six
|
13 |
+
|
14 |
+
from urllib.request import urlopen, Request
|
15 |
+
import tempfile
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def Deps(force_reinstall):
|
22 |
+
|
23 |
+
if not force_reinstall and os.path.exists('/usr/local/lib/python3.10/dist-packages/safetensors'):
|
24 |
+
ntbks()
|
25 |
+
print('[1;32mModules and notebooks updated, dependencies already installed')
|
26 |
+
os.environ['TORCH_HOME'] = '/workspace/cache/torch'
|
27 |
+
os.environ['PYTHONWARNINGS'] = 'ignore'
|
28 |
+
else:
|
29 |
+
call('pip install --root-user-action=ignore --disable-pip-version-check --no-deps -qq gdown PyWavelets numpy==1.23.5 accelerate==0.12.0 --force-reinstall', shell=True, stdout=open('/dev/null', 'w'))
|
30 |
+
ntbks()
|
31 |
+
if os.path.exists('deps'):
|
32 |
+
call("rm -r deps", shell=True)
|
33 |
+
if os.path.exists('diffusers'):
|
34 |
+
call("rm -r diffusers", shell=True)
|
35 |
+
call('mkdir deps', shell=True)
|
36 |
+
if not os.path.exists('cache'):
|
37 |
+
call('mkdir cache', shell=True)
|
38 |
+
os.chdir('deps')
|
39 |
+
dwn("https://huggingface.co/TheLastBen/dependencies/resolve/main/rnpddeps-t2.tar.zst", "/workspace/deps/rnpddeps-t2.tar.zst", "Installing dependencies")
|
40 |
+
call('tar -C / --zstd -xf rnpddeps-t2.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
|
41 |
+
call("sed -i 's@~/.cache@/workspace/cache@' /usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", shell=True)
|
42 |
+
os.chdir('/workspace')
|
43 |
+
call("git clone --depth 1 -q --branch main https://github.com/TheLastBen/diffusers", shell=True, stdout=open('/dev/null', 'w'))
|
44 |
+
#call('pip install --root-user-action=ignore --disable-pip-version-check -qq gradio==3.41.0', shell=True, stdout=open('/dev/null', 'w'))
|
45 |
+
call("rm -r deps", shell=True)
|
46 |
+
os.chdir('/workspace')
|
47 |
+
os.environ['TORCH_HOME'] = '/workspace/cache/torch'
|
48 |
+
os.environ['PYTHONWARNINGS'] = 'ignore'
|
49 |
+
call("sed -i 's@text = _formatwarnmsg(msg)@text =\"\"@g' /usr/lib/python3.10/warnings.py", shell=True)
|
50 |
+
clear_output()
|
51 |
+
|
52 |
+
done()
|
53 |
+
|
54 |
+
|
55 |
+
def dwn(url, dst, msg):
|
56 |
+
file_size = None
|
57 |
+
req = Request(url, headers={"User-Agent": "torch.hub"})
|
58 |
+
u = urlopen(req)
|
59 |
+
meta = u.info()
|
60 |
+
if hasattr(meta, 'getheaders'):
|
61 |
+
content_length = meta.getheaders("Content-Length")
|
62 |
+
else:
|
63 |
+
content_length = meta.get_all("Content-Length")
|
64 |
+
if content_length is not None and len(content_length) > 0:
|
65 |
+
file_size = int(content_length[0])
|
66 |
+
|
67 |
+
with tqdm(total=file_size, disable=False, mininterval=0.5,
|
68 |
+
bar_format=msg+' |{bar:20}| {percentage:3.0f}%') as pbar:
|
69 |
+
with open(dst, "wb") as f:
|
70 |
+
while True:
|
71 |
+
buffer = u.read(8192)
|
72 |
+
if len(buffer) == 0:
|
73 |
+
break
|
74 |
+
f.write(buffer)
|
75 |
+
pbar.update(len(buffer))
|
76 |
+
f.close()
|
77 |
+
|
78 |
+
|
79 |
+
def ntbks():
|
80 |
+
|
81 |
+
os.chdir('/workspace')
|
82 |
+
if not os.path.exists('Latest_Notebooks'):
|
83 |
+
call('mkdir Latest_Notebooks', shell=True)
|
84 |
+
else:
|
85 |
+
call('rm -r Latest_Notebooks', shell=True)
|
86 |
+
call('mkdir Latest_Notebooks', shell=True)
|
87 |
+
os.chdir('/workspace/Latest_Notebooks')
|
88 |
+
call('wget -q -i https://huggingface.co/datasets/TheLastBen/RNPD/raw/main/Notebooks.txt', shell=True)
|
89 |
+
call('rm Notebooks.txt', shell=True)
|
90 |
+
os.chdir('/workspace')
|
91 |
+
|
92 |
+
|
93 |
+
def repo(Huggingface_token_optional):
|
94 |
+
|
95 |
+
from slugify import slugify
|
96 |
+
from huggingface_hub import HfApi, CommitOperationAdd, create_repo
|
97 |
+
|
98 |
+
os.chdir('/workspace')
|
99 |
+
if Huggingface_token_optional!="":
|
100 |
+
username = HfApi().whoami(Huggingface_token_optional)["name"]
|
101 |
+
backup=f"https://huggingface.co/datasets/{username}/fast-stable-diffusion/resolve/main/sd_backup_rnpd.tar.zst"
|
102 |
+
headers = {"Authorization": f"Bearer {Huggingface_token_optional}"}
|
103 |
+
response = requests.head(backup, headers=headers)
|
104 |
+
if response.status_code == 302:
|
105 |
+
print('[1;33mRestoring the SD folder...')
|
106 |
+
open('/workspace/sd_backup_rnpd.tar.zst', 'wb').write(requests.get(backup, headers=headers).content)
|
107 |
+
call('tar --zstd -xf sd_backup_rnpd.tar.zst', shell=True)
|
108 |
+
call('rm sd_backup_rnpd.tar.zst', shell=True)
|
109 |
+
else:
|
110 |
+
print('[1;33mBackup not found, using a fresh/existing repo...')
|
111 |
+
time.sleep(2)
|
112 |
+
if not os.path.exists('/workspace/sd/stablediffusiond'): #reset later
|
113 |
+
call('wget -q -O sd_mrep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_mrep.tar.zst', shell=True)
|
114 |
+
call('tar --zstd -xf sd_mrep.tar.zst', shell=True)
|
115 |
+
call('rm sd_mrep.tar.zst', shell=True)
|
116 |
+
os.chdir('/workspace/sd')
|
117 |
+
if not os.path.exists('stable-diffusion-webui'):
|
118 |
+
call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True)
|
119 |
+
|
120 |
+
else:
|
121 |
+
print('[1;33mInstalling/Updating the repo...')
|
122 |
+
os.chdir('/workspace')
|
123 |
+
if not os.path.exists('/workspace/sd/stablediffusiond'): #reset later
|
124 |
+
call('wget -q -O sd_mrep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_mrep.tar.zst', shell=True)
|
125 |
+
call('tar --zstd -xf sd_mrep.tar.zst', shell=True)
|
126 |
+
call('rm sd_mrep.tar.zst', shell=True)
|
127 |
+
|
128 |
+
os.chdir('/workspace/sd')
|
129 |
+
if not os.path.exists('stable-diffusion-webui'):
|
130 |
+
call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True)
|
131 |
+
|
132 |
+
|
133 |
+
os.chdir('/workspace/sd/stable-diffusion-webui/')
|
134 |
+
call('git reset --hard', shell=True)
|
135 |
+
print('[1;32m')
|
136 |
+
call('git pull', shell=True)
|
137 |
+
os.chdir('/workspace')
|
138 |
+
clear_output()
|
139 |
+
done()
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
def mdl(Original_Model_Version, Path_to_MODEL, MODEL_LINK):
|
144 |
+
|
145 |
+
import gdown
|
146 |
+
|
147 |
+
src=getsrc(MODEL_LINK)
|
148 |
+
|
149 |
+
if not os.path.exists('/workspace/sd/stable-diffusion-webui/models/Stable-diffusion/SDv1-5.ckpt'):
|
150 |
+
call('ln -s /workspace/auto-models/* /workspace/sd/stable-diffusion-webui/models/Stable-diffusion', shell=True)
|
151 |
+
|
152 |
+
if Path_to_MODEL !='':
|
153 |
+
if os.path.exists(str(Path_to_MODEL)):
|
154 |
+
print('[1;32mUsing the custom model')
|
155 |
+
model=Path_to_MODEL
|
156 |
+
else:
|
157 |
+
print('[1;31mWrong path, check that the path to the model is correct')
|
158 |
+
|
159 |
+
elif MODEL_LINK !="":
|
160 |
+
|
161 |
+
if src=='civitai':
|
162 |
+
modelname=get_name(MODEL_LINK, False)
|
163 |
+
model=f'/workspace/sd/stable-diffusion-webui/models/Stable-diffusion/{modelname}'
|
164 |
+
if not os.path.exists(model):
|
165 |
+
dwn(MODEL_LINK, model, 'Downloading the custom model')
|
166 |
+
clear_output()
|
167 |
+
else:
|
168 |
+
print('[1;33mModel already exists')
|
169 |
+
elif src=='gdrive':
|
170 |
+
modelname=get_name(MODEL_LINK, True)
|
171 |
+
model=f'/workspace/sd/stable-diffusion-webui/models/Stable-diffusion/{modelname}'
|
172 |
+
if not os.path.exists(model):
|
173 |
+
gdown.download(url=MODEL_LINK, output=model, quiet=False, fuzzy=True)
|
174 |
+
clear_output()
|
175 |
+
else:
|
176 |
+
print('[1;33mModel already exists')
|
177 |
+
else:
|
178 |
+
modelname=os.path.basename(MODEL_LINK)
|
179 |
+
model=f'/workspace/sd/stable-diffusion-webui/models/Stable-diffusion/{modelname}'
|
180 |
+
if not os.path.exists(model):
|
181 |
+
gdown.download(url=MODEL_LINK, output=model, quiet=False, fuzzy=True)
|
182 |
+
clear_output()
|
183 |
+
else:
|
184 |
+
print('[1;33mModel already exists')
|
185 |
+
|
186 |
+
if os.path.exists(model) and os.path.getsize(model) > 1810671599:
|
187 |
+
print('[1;32mModel downloaded, using the custom model.')
|
188 |
+
else:
|
189 |
+
call('rm '+model, shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
190 |
+
print('[1;31mWrong link, check that the link is valid')
|
191 |
+
|
192 |
+
else:
|
193 |
+
if Original_Model_Version == "v1.5":
|
194 |
+
model="/workspace/sd/stable-diffusion-webui/models/Stable-diffusion/SDv1-5.ckpt"
|
195 |
+
print('[1;32mUsing the original V1.5 model')
|
196 |
+
elif Original_Model_Version == "v2-512":
|
197 |
+
model='/workspace/sd/stable-diffusion-webui/models/Stable-diffusion/SDv2-512.ckpt'
|
198 |
+
if not os.path.exists('/workspace/sd/stable-diffusion-webui/models/Stable-diffusion/SDv2-512.ckpt'):
|
199 |
+
print('[1;33mDownloading the V2-512 model...')
|
200 |
+
call('gdown -O '+model+' https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-nonema-pruned.ckpt', shell=True)
|
201 |
+
clear_output()
|
202 |
+
print('[1;32mUsing the original V2-512 model')
|
203 |
+
elif Original_Model_Version == "v2-768":
|
204 |
+
model="/workspace/sd/stable-diffusion-webui/models/Stable-diffusion/SDv2-768.ckpt"
|
205 |
+
print('[1;32mUsing the original V2-768 model')
|
206 |
+
elif Original_Model_Version == "SDXL":
|
207 |
+
model="/workspace/sd/stable-diffusion-webui/models/Stable-diffusion/sd_xl_base_1.0.safetensors"
|
208 |
+
print('[1;32mUsing the original SDXL model')
|
209 |
+
|
210 |
+
else:
|
211 |
+
model="/workspace/sd/stable-diffusion-webui/models/Stable-diffusion"
|
212 |
+
print('[1;31mWrong model version, try again')
|
213 |
+
try:
|
214 |
+
model
|
215 |
+
except:
|
216 |
+
model="/workspace/sd/stable-diffusion-webui/models/Stable-diffusion"
|
217 |
+
|
218 |
+
return model
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
def loradwn(LoRA_LINK):
|
223 |
+
|
224 |
+
os.makedirs('/workspace/sd/stable-diffusion-webui/models/Lora', exist_ok=True)
|
225 |
+
|
226 |
+
src=getsrc(LoRA_LINK)
|
227 |
+
|
228 |
+
if src=='civitai':
|
229 |
+
modelname=get_name(LoRA_LINK, False)
|
230 |
+
loramodel=f'/workspace/sd/stable-diffusion-webui/models/Lora/{modelname}'
|
231 |
+
if not os.path.exists(loramodel):
|
232 |
+
dwn(LoRA_LINK, loramodel, 'Downloading the LoRA model')
|
233 |
+
clear_output()
|
234 |
+
else:
|
235 |
+
print('[1;33mModel already exists')
|
236 |
+
elif src=='gdrive':
|
237 |
+
modelname=get_name(LoRA_LINK, True)
|
238 |
+
loramodel=f'/workspace/sd/stable-diffusion-webui/models/Lora/{modelname}'
|
239 |
+
if not os.path.exists(loramodel):
|
240 |
+
gdown.download(url=LoRA_LINK, output=loramodel, quiet=False, fuzzy=True)
|
241 |
+
clear_output()
|
242 |
+
else:
|
243 |
+
print('[1;33mModel already exists')
|
244 |
+
else:
|
245 |
+
modelname=os.path.basename(LoRA_LINK)
|
246 |
+
loramodel=f'/workspace/sd/stable-diffusion-webui/models/Lora/{modelname}'
|
247 |
+
if not os.path.exists(loramodel):
|
248 |
+
gdown.download(url=LoRA_LINK, output=loramodel, quiet=False, fuzzy=True)
|
249 |
+
clear_output()
|
250 |
+
else:
|
251 |
+
print('[1;33mModel already exists')
|
252 |
+
|
253 |
+
if os.path.exists(loramodel) :
|
254 |
+
print('[1;32mLoRA downloaded')
|
255 |
+
else:
|
256 |
+
print('[1;31mWrong link, check that the link is valid')
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
def CNet(ControlNet_Model, ControlNet_v2_Model):
|
261 |
+
|
262 |
+
def download(url, model_dir):
|
263 |
+
|
264 |
+
filename = os.path.basename(urlparse(url).path)
|
265 |
+
pth = os.path.abspath(os.path.join(model_dir, filename))
|
266 |
+
if not os.path.exists(pth):
|
267 |
+
print('Downloading: '+os.path.basename(url))
|
268 |
+
download_url_to_file(url, pth, hash_prefix=None, progress=True)
|
269 |
+
else:
|
270 |
+
print(f"[1;32mThe model {filename} already exists[0m")
|
271 |
+
|
272 |
+
wrngv1=False
|
273 |
+
os.chdir('/workspace/sd/stable-diffusion-webui/extensions')
|
274 |
+
if not os.path.exists("sd-webui-controlnet"):
|
275 |
+
call('git clone https://github.com/Mikubill/sd-webui-controlnet.git', shell=True)
|
276 |
+
os.chdir('/workspace')
|
277 |
+
else:
|
278 |
+
os.chdir('sd-webui-controlnet')
|
279 |
+
call('git reset --hard', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
280 |
+
call('git pull', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
281 |
+
os.chdir('/workspace')
|
282 |
+
|
283 |
+
mdldir="/workspace/sd/stable-diffusion-webui/extensions/sd-webui-controlnet/models"
|
284 |
+
for filename in os.listdir(mdldir):
|
285 |
+
if "_sd14v1" in filename:
|
286 |
+
renamed = re.sub("_sd14v1", "-fp16", filename)
|
287 |
+
os.rename(os.path.join(mdldir, filename), os.path.join(mdldir, renamed))
|
288 |
+
|
289 |
+
call('wget -q -O CN_models.txt https://github.com/TheLastBen/fast-stable-diffusion/raw/main/AUTOMATIC1111_files/CN_models.txt', shell=True)
|
290 |
+
call('wget -q -O CN_models_v2.txt https://github.com/TheLastBen/fast-stable-diffusion/raw/main/AUTOMATIC1111_files/CN_models_v2.txt', shell=True)
|
291 |
+
|
292 |
+
with open("CN_models.txt", 'r') as f:
|
293 |
+
mdllnk = f.read().splitlines()
|
294 |
+
with open("CN_models_v2.txt", 'r') as d:
|
295 |
+
mdllnk_v2 = d.read().splitlines()
|
296 |
+
call('rm CN_models.txt CN_models_v2.txt', shell=True)
|
297 |
+
|
298 |
+
cfgnames=[os.path.basename(url).split('.')[0]+'.yaml' for url in mdllnk_v2]
|
299 |
+
os.chdir('/workspace/sd/stable-diffusion-webui/extensions/sd-webui-controlnet/models')
|
300 |
+
for name in cfgnames:
|
301 |
+
run(['cp', 'cldm_v21.yaml', name])
|
302 |
+
os.chdir('/workspace')
|
303 |
+
|
304 |
+
if ControlNet_Model == "All" or ControlNet_Model == "all" :
|
305 |
+
for lnk in mdllnk:
|
306 |
+
download(lnk, mdldir)
|
307 |
+
clear_output()
|
308 |
+
|
309 |
+
|
310 |
+
elif ControlNet_Model == "15":
|
311 |
+
mdllnk=list(filter(lambda x: 't2i' in x, mdllnk))
|
312 |
+
for lnk in mdllnk:
|
313 |
+
download(lnk, mdldir)
|
314 |
+
clear_output()
|
315 |
+
|
316 |
+
|
317 |
+
elif ControlNet_Model.isdigit() and int(ControlNet_Model)-1<14 and int(ControlNet_Model)>0:
|
318 |
+
download(mdllnk[int(ControlNet_Model)-1], mdldir)
|
319 |
+
clear_output()
|
320 |
+
|
321 |
+
elif ControlNet_Model == "none":
|
322 |
+
pass
|
323 |
+
clear_output()
|
324 |
+
|
325 |
+
else:
|
326 |
+
print('[1;31mWrong ControlNet V1 choice, try again')
|
327 |
+
wrngv1=True
|
328 |
+
|
329 |
+
|
330 |
+
if ControlNet_v2_Model == "All" or ControlNet_v2_Model == "all" :
|
331 |
+
for lnk_v2 in mdllnk_v2:
|
332 |
+
download(lnk_v2, mdldir)
|
333 |
+
if not wrngv1:
|
334 |
+
clear_output()
|
335 |
+
done()
|
336 |
+
|
337 |
+
elif ControlNet_v2_Model.isdigit() and int(ControlNet_v2_Model)-1<5:
|
338 |
+
download(mdllnk_v2[int(ControlNet_v2_Model)-1], mdldir)
|
339 |
+
if not wrngv1:
|
340 |
+
clear_output()
|
341 |
+
done()
|
342 |
+
|
343 |
+
elif ControlNet_v2_Model == "none":
|
344 |
+
pass
|
345 |
+
if not wrngv1:
|
346 |
+
clear_output()
|
347 |
+
done()
|
348 |
+
|
349 |
+
else:
|
350 |
+
print('[1;31mWrong ControlNet V2 choice, try again')
|
351 |
+
|
352 |
+
|
353 |
+
|
354 |
+
def sd(User, Password, model):
|
355 |
+
|
356 |
+
import gradio
|
357 |
+
|
358 |
+
gradio.close_all()
|
359 |
+
|
360 |
+
auth=f"--gradio-auth {User}:{Password}"
|
361 |
+
if User =="" or Password=="":
|
362 |
+
auth=""
|
363 |
+
|
364 |
+
call('wget -q -O /usr/local/lib/python3.10/dist-packages/gradio/blocks.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/blocks.py', shell=True)
|
365 |
+
|
366 |
+
os.chdir('/workspace/sd/stable-diffusion-webui/modules')
|
367 |
+
|
368 |
+
call("sed -i 's@possible_sd_paths =.*@possible_sd_paths = [\"/workspace/sd/stablediffusion\"]@' /workspace/sd/stable-diffusion-webui/modules/paths.py", shell=True)
|
369 |
+
call("sed -i 's@\.\.\/@src/@g' /workspace/sd/stable-diffusion-webui/modules/paths.py", shell=True)
|
370 |
+
call("sed -i 's@src\/generative-models@generative-models@g' /workspace/sd/stable-diffusion-webui/modules/paths.py", shell=True)
|
371 |
+
|
372 |
+
call("sed -i 's@\[\"sd_model_checkpoint\"\]@\[\"sd_model_checkpoint\", \"sd_vae\", \"CLIP_stop_at_last_layers\", \"inpainting_mask_weight\", \"initial_noise_multiplier\"\]@g' /workspace/sd/stable-diffusion-webui/modules/shared.py", shell=True)
|
373 |
+
|
374 |
+
call("sed -i 's@print(\"No module.*@@' /workspace/sd/stablediffusion/ldm/modules/diffusionmodules/model.py", shell=True)
|
375 |
+
os.chdir('/workspace/sd/stable-diffusion-webui')
|
376 |
+
clear_output()
|
377 |
+
|
378 |
+
podid=os.environ.get('RUNPOD_POD_ID')
|
379 |
+
localurl=f"{podid}-3001.proxy.runpod.net"
|
380 |
+
|
381 |
+
for line in fileinput.input('/usr/local/lib/python3.10/dist-packages/gradio/blocks.py', inplace=True):
|
382 |
+
if line.strip().startswith('self.server_name ='):
|
383 |
+
line = f' self.server_name = "{localurl}"\n'
|
384 |
+
if line.strip().startswith('self.protocol = "https"'):
|
385 |
+
line = ' self.protocol = "https"\n'
|
386 |
+
if line.strip().startswith('if self.local_url.startswith("https") or self.is_colab'):
|
387 |
+
line = ''
|
388 |
+
if line.strip().startswith('else "http"'):
|
389 |
+
line = ''
|
390 |
+
sys.stdout.write(line)
|
391 |
+
|
392 |
+
if model=="":
|
393 |
+
mdlpth=""
|
394 |
+
else:
|
395 |
+
if os.path.isfile(model):
|
396 |
+
mdlpth="--ckpt "+model
|
397 |
+
else:
|
398 |
+
mdlpth="--ckpt-dir "+model
|
399 |
+
|
400 |
+
configf="--disable-console-progressbars --no-half-vae --disable-safe-unpickle --api --no-download-sd-model --opt-sdp-attention --enable-insecure-extension-access --skip-version-check --listen --port 3000 "+auth+" "+mdlpth
|
401 |
+
|
402 |
+
return configf
|
403 |
+
|
404 |
+
|
405 |
+
|
406 |
+
def save(Huggingface_Write_token):
|
407 |
+
|
408 |
+
from slugify import slugify
|
409 |
+
from huggingface_hub import HfApi, CommitOperationAdd, create_repo
|
410 |
+
|
411 |
+
if Huggingface_Write_token=="":
|
412 |
+
print('[1;31mA huggingface write token is required')
|
413 |
+
|
414 |
+
else:
|
415 |
+
os.chdir('/workspace')
|
416 |
+
|
417 |
+
if os.path.exists('sd'):
|
418 |
+
|
419 |
+
call('tar --exclude="stable-diffusion-webui/models/*/*" --exclude="sd-webui-controlnet/models/*" --zstd -cf sd_backup_rnpd.tar.zst sd', shell=True)
|
420 |
+
api = HfApi()
|
421 |
+
username = api.whoami(token=Huggingface_Write_token)["name"]
|
422 |
+
|
423 |
+
repo_id = f"{username}/{slugify('fast-stable-diffusion')}"
|
424 |
+
|
425 |
+
print("[1;32mBacking up...")
|
426 |
+
|
427 |
+
operations = [CommitOperationAdd(path_in_repo="sd_backup_rnpd.tar.zst", path_or_fileobj="/workspace/sd_backup_rnpd.tar.zst")]
|
428 |
+
|
429 |
+
create_repo(repo_id,private=True, token=Huggingface_Write_token, exist_ok=True, repo_type="dataset")
|
430 |
+
|
431 |
+
api.create_commit(
|
432 |
+
repo_id=repo_id,
|
433 |
+
repo_type="dataset",
|
434 |
+
operations=operations,
|
435 |
+
commit_message="SD folder Backup",
|
436 |
+
token=Huggingface_Write_token
|
437 |
+
)
|
438 |
+
|
439 |
+
call('rm sd_backup_rnpd.tar.zst', shell=True)
|
440 |
+
clear_output()
|
441 |
+
|
442 |
+
done()
|
443 |
+
|
444 |
+
else:
|
445 |
+
print('[1;33mNothing to backup')
|
446 |
+
|
447 |
+
|
448 |
+
|
449 |
+
|
450 |
+
def getsrc(url):
|
451 |
+
|
452 |
+
parsed_url = urlparse(url)
|
453 |
+
|
454 |
+
if parsed_url.netloc == 'civitai.com':
|
455 |
+
src='civitai'
|
456 |
+
elif parsed_url.netloc == 'drive.google.com':
|
457 |
+
src='gdrive'
|
458 |
+
elif parsed_url.netloc == 'huggingface.co':
|
459 |
+
src='huggingface'
|
460 |
+
else:
|
461 |
+
src='others'
|
462 |
+
return src
|
463 |
+
|
464 |
+
|
465 |
+
|
466 |
+
def get_name(url, gdrive):
|
467 |
+
|
468 |
+
from gdown.download import get_url_from_gdrive_confirmation
|
469 |
+
|
470 |
+
if not gdrive:
|
471 |
+
response = requests.get(url, allow_redirects=False)
|
472 |
+
if "Location" in response.headers:
|
473 |
+
redirected_url = response.headers["Location"]
|
474 |
+
quer = parse_qs(urlparse(redirected_url).query)
|
475 |
+
if "response-content-disposition" in quer:
|
476 |
+
disp_val = quer["response-content-disposition"][0].split(";")
|
477 |
+
for vals in disp_val:
|
478 |
+
if vals.strip().startswith("filename="):
|
479 |
+
filenm=unquote(vals.split("=", 1)[1].strip())
|
480 |
+
return filenm.replace("\"","")
|
481 |
+
else:
|
482 |
+
headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"}
|
483 |
+
lnk="https://drive.google.com/uc?id={id}&export=download".format(id=url[url.find("/d/")+3:url.find("/view")])
|
484 |
+
res = requests.session().get(lnk, headers=headers, stream=True, verify=True)
|
485 |
+
res = requests.session().get(get_url_from_gdrive_confirmation(res.text), headers=headers, stream=True, verify=True)
|
486 |
+
content_disposition = six.moves.urllib_parse.unquote(res.headers["Content-Disposition"])
|
487 |
+
filenm = re.search(r"filename\*=UTF-8''(.*)", content_disposition).groups()[0].replace(os.path.sep, "_")
|
488 |
+
return filenm
|
489 |
+
|
490 |
+
|
491 |
+
|
492 |
+
|
493 |
+
def done():
|
494 |
+
done = widgets.Button(
|
495 |
+
description='Done!',
|
496 |
+
disabled=True,
|
497 |
+
button_style='success',
|
498 |
+
tooltip='',
|
499 |
+
icon='check'
|
500 |
+
)
|
501 |
+
display(done)
|
sdxllorarunpod.py
ADDED
@@ -0,0 +1,1131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from IPython.display import clear_output
|
2 |
+
from subprocess import call, getoutput, Popen
|
3 |
+
from IPython.display import display
|
4 |
+
import ipywidgets as widgets
|
5 |
+
import io
|
6 |
+
from PIL import Image, ImageDraw, ImageOps
|
7 |
+
import fileinput
|
8 |
+
import time
|
9 |
+
import os
|
10 |
+
from os import listdir
|
11 |
+
from os.path import isfile
|
12 |
+
import random
|
13 |
+
import sys
|
14 |
+
from io import BytesIO
|
15 |
+
import requests
|
16 |
+
from collections import defaultdict
|
17 |
+
from math import log, sqrt
|
18 |
+
import numpy as np
|
19 |
+
import sys
|
20 |
+
import fileinput
|
21 |
+
from subprocess import check_output
|
22 |
+
import six
|
23 |
+
import base64
|
24 |
+
import re
|
25 |
+
|
26 |
+
from urllib.parse import urlparse, parse_qs, unquote
|
27 |
+
import urllib.request
|
28 |
+
from urllib.request import urlopen, Request
|
29 |
+
|
30 |
+
import tempfile
|
31 |
+
from tqdm import tqdm
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
def Deps(force_reinstall):
|
37 |
+
|
38 |
+
if not force_reinstall and os.path.exists('/usr/local/lib/python3.10/dist-packages/safetensors'):
|
39 |
+
ntbks()
|
40 |
+
call('pip install --root-user-action=ignore --disable-pip-version-check -qq diffusers==0.18.1', shell=True, stdout=open('/dev/null', 'w'))
|
41 |
+
print('[1;32mModules and notebooks updated, dependencies already installed')
|
42 |
+
os.environ['TORCH_HOME'] = '/workspace/cache/torch'
|
43 |
+
os.environ['PYTHONWARNINGS'] = 'ignore'
|
44 |
+
else:
|
45 |
+
call('pip install --root-user-action=ignore --disable-pip-version-check --no-deps -qq gdown PyWavelets numpy==1.23.5 accelerate==0.12.0 --force-reinstall', shell=True, stdout=open('/dev/null', 'w'))
|
46 |
+
ntbks()
|
47 |
+
if os.path.exists('deps'):
|
48 |
+
call("rm -r deps", shell=True)
|
49 |
+
if os.path.exists('diffusers'):
|
50 |
+
call("rm -r diffusers", shell=True)
|
51 |
+
call('mkdir deps', shell=True)
|
52 |
+
if not os.path.exists('cache'):
|
53 |
+
call('mkdir cache', shell=True)
|
54 |
+
os.chdir('deps')
|
55 |
+
dwn("https://huggingface.co/TheLastBen/dependencies/resolve/main/rnpddeps-t2.tar.zst", "/workspace/deps/rnpddeps-t2.tar.zst", "Installing dependencies")
|
56 |
+
call('tar -C / --zstd -xf rnpddeps-t2.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
|
57 |
+
call("sed -i 's@~/.cache@/workspace/cache@' /usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", shell=True)
|
58 |
+
os.chdir('/workspace')
|
59 |
+
call('pip install --root-user-action=ignore --disable-pip-version-check -qq diffusers==0.18.1', shell=True, stdout=open('/dev/null', 'w'))
|
60 |
+
call("git clone --depth 1 -q --branch main https://github.com/TheLastBen/diffusers", shell=True, stdout=open('/dev/null', 'w'))
|
61 |
+
#call('pip install --root-user-action=ignore --disable-pip-version-check -qq gradio==3.41.0', shell=True, stdout=open('/dev/null', 'w'))
|
62 |
+
call("rm -r deps", shell=True)
|
63 |
+
os.chdir('/workspace')
|
64 |
+
os.environ['TORCH_HOME'] = '/workspace/cache/torch'
|
65 |
+
os.environ['PYTHONWARNINGS'] = 'ignore'
|
66 |
+
call("sed -i 's@text = _formatwarnmsg(msg)@text =\"\"@g' /usr/lib/python3.10/warnings.py", shell=True)
|
67 |
+
clear_output()
|
68 |
+
|
69 |
+
done()
|
70 |
+
|
71 |
+
|
72 |
+
def dwn(url, dst, msg):
|
73 |
+
file_size = None
|
74 |
+
req = Request(url, headers={"User-Agent": "torch.hub"})
|
75 |
+
u = urlopen(req)
|
76 |
+
meta = u.info()
|
77 |
+
if hasattr(meta, 'getheaders'):
|
78 |
+
content_length = meta.getheaders("Content-Length")
|
79 |
+
else:
|
80 |
+
content_length = meta.get_all("Content-Length")
|
81 |
+
if content_length is not None and len(content_length) > 0:
|
82 |
+
file_size = int(content_length[0])
|
83 |
+
|
84 |
+
with tqdm(total=file_size, disable=False, mininterval=0.5,
|
85 |
+
bar_format=msg+' |{bar:20}| {percentage:3.0f}%') as pbar:
|
86 |
+
with open(dst, "wb") as f:
|
87 |
+
while True:
|
88 |
+
buffer = u.read(8192)
|
89 |
+
if len(buffer) == 0:
|
90 |
+
break
|
91 |
+
f.write(buffer)
|
92 |
+
pbar.update(len(buffer))
|
93 |
+
f.close()
|
94 |
+
|
95 |
+
|
96 |
+
def ntbks():
|
97 |
+
|
98 |
+
os.chdir('/workspace')
|
99 |
+
if not os.path.exists('Latest_Notebooks'):
|
100 |
+
call('mkdir Latest_Notebooks', shell=True)
|
101 |
+
else:
|
102 |
+
call('rm -r Latest_Notebooks', shell=True)
|
103 |
+
call('mkdir Latest_Notebooks', shell=True)
|
104 |
+
os.chdir('/workspace/Latest_Notebooks')
|
105 |
+
call('wget -q -i https://huggingface.co/datasets/TheLastBen/RNPD/raw/main/Notebooks.txt', shell=True)
|
106 |
+
call('rm Notebooks.txt', shell=True)
|
107 |
+
os.chdir('/workspace')
|
108 |
+
|
109 |
+
def done():
|
110 |
+
done = widgets.Button(
|
111 |
+
description='Done!',
|
112 |
+
disabled=True,
|
113 |
+
button_style='success',
|
114 |
+
tooltip='',
|
115 |
+
icon='check'
|
116 |
+
)
|
117 |
+
display(done)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
def mdlvxl():
|
122 |
+
|
123 |
+
os.chdir('/workspace')
|
124 |
+
|
125 |
+
if os.path.exists('stable-diffusion-XL') and not os.path.exists('/workspace/stable-diffusion-XL/unet/diffusion_pytorch_model.safetensors'):
|
126 |
+
call('rm -r stable-diffusion-XL', shell=True)
|
127 |
+
if not os.path.exists('stable-diffusion-XL'):
|
128 |
+
print('[1;33mDownloading SDXL model...')
|
129 |
+
call('mkdir stable-diffusion-XL', shell=True)
|
130 |
+
os.chdir('stable-diffusion-XL')
|
131 |
+
call('git init', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
132 |
+
call('git lfs install --system --skip-repo', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
133 |
+
call('git remote add -f origin https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
134 |
+
call('git config core.sparsecheckout true', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
135 |
+
call('echo -e "\nscheduler\ntext_encoder\ntext_encoder_2\ntokenizer\ntokenizer_2\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors\n!*.bin\n!*.onnx*\n!*.xml" > .git/info/sparse-checkout', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
136 |
+
call('git pull origin main', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
137 |
+
dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/text_encoder/model.safetensors', 'text_encoder/model.safetensors', '1/4')
|
138 |
+
dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/text_encoder_2/model.safetensors', 'text_encoder_2/model.safetensors', '2/4')
|
139 |
+
dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/vae/diffusion_pytorch_model.safetensors', 'vae/diffusion_pytorch_model.safetensors', '3/4')
|
140 |
+
dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/unet/diffusion_pytorch_model.safetensors', 'unet/diffusion_pytorch_model.safetensors', '4/4')
|
141 |
+
call('rm -r .git', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
142 |
+
os.chdir('/workspace')
|
143 |
+
clear_output()
|
144 |
+
while not os.path.exists('/workspace/stable-diffusion-XL/unet/diffusion_pytorch_model.safetensors'):
|
145 |
+
print('[1;31mInvalid HF token, make sure you have access to the model')
|
146 |
+
time.sleep(8)
|
147 |
+
if os.path.exists('/workspace/stable-diffusion-XL/unet/diffusion_pytorch_model.safetensors'):
|
148 |
+
print('[1;32mUsing SDXL model')
|
149 |
+
else:
|
150 |
+
print('[1;32mUsing SDXL model')
|
151 |
+
|
152 |
+
call("sed -i 's@\"force_upcast.*@@' /workspace/stable-diffusion-XL/vae/config.json", shell=True)
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
def downloadmodel_hfxl(Path_to_HuggingFace):
|
157 |
+
|
158 |
+
os.chdir('/workspace')
|
159 |
+
if os.path.exists('stable-diffusion-custom'):
|
160 |
+
call("rm -r stable-diffusion-custom", shell=True)
|
161 |
+
clear_output()
|
162 |
+
|
163 |
+
if os.path.exists('Fast-Dreambooth/token.txt'):
|
164 |
+
with open("Fast-Dreambooth/token.txt") as f:
|
165 |
+
token = f.read()
|
166 |
+
authe=f'https://USER:{token}@'
|
167 |
+
else:
|
168 |
+
authe="https://"
|
169 |
+
|
170 |
+
clear_output()
|
171 |
+
call("mkdir stable-diffusion-custom", shell=True)
|
172 |
+
os.chdir("stable-diffusion-custom")
|
173 |
+
call("git init", shell=True)
|
174 |
+
call("git lfs install --system --skip-repo", shell=True)
|
175 |
+
call('git remote add -f origin '+authe+'huggingface.co/'+Path_to_HuggingFace, shell=True)
|
176 |
+
call("git config core.sparsecheckout true", shell=True)
|
177 |
+
call('echo -e "\nscheduler\ntext_encoder\ntokenizer\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.fp16.safetensors" > .git/info/sparse-checkout', shell=True)
|
178 |
+
call("git pull origin main", shell=True)
|
179 |
+
if os.path.exists('unet/diffusion_pytorch_model.safetensors'):
|
180 |
+
call("rm -r .git", shell=True)
|
181 |
+
os.chdir('/workspace')
|
182 |
+
clear_output()
|
183 |
+
done()
|
184 |
+
while not os.path.exists('/workspace/stable-diffusion-custom/unet/diffusion_pytorch_model.safetensors'):
|
185 |
+
print('[1;31mCheck the link you provided')
|
186 |
+
os.chdir('/workspace')
|
187 |
+
time.sleep(5)
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
def downloadmodel_link_xl(MODEL_LINK):
|
192 |
+
|
193 |
+
import wget
|
194 |
+
import gdown
|
195 |
+
from gdown.download import get_url_from_gdrive_confirmation
|
196 |
+
|
197 |
+
def getsrc(url):
|
198 |
+
parsed_url = urlparse(url)
|
199 |
+
if parsed_url.netloc == 'civitai.com':
|
200 |
+
src='civitai'
|
201 |
+
elif parsed_url.netloc == 'drive.google.com':
|
202 |
+
src='gdrive'
|
203 |
+
elif parsed_url.netloc == 'huggingface.co':
|
204 |
+
src='huggingface'
|
205 |
+
else:
|
206 |
+
src='others'
|
207 |
+
return src
|
208 |
+
|
209 |
+
src=getsrc(MODEL_LINK)
|
210 |
+
|
211 |
+
def get_name(url, gdrive):
|
212 |
+
if not gdrive:
|
213 |
+
response = requests.get(url, allow_redirects=False)
|
214 |
+
if "Location" in response.headers:
|
215 |
+
redirected_url = response.headers["Location"]
|
216 |
+
quer = parse_qs(urlparse(redirected_url).query)
|
217 |
+
if "response-content-disposition" in quer:
|
218 |
+
disp_val = quer["response-content-disposition"][0].split(";")
|
219 |
+
for vals in disp_val:
|
220 |
+
if vals.strip().startswith("filename="):
|
221 |
+
filenm=unquote(vals.split("=", 1)[1].strip())
|
222 |
+
return filenm.replace("\"","")
|
223 |
+
else:
|
224 |
+
headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"}
|
225 |
+
lnk="https://drive.google.com/uc?id={id}&export=download".format(id=url[url.find("/d/")+3:url.find("/view")])
|
226 |
+
res = requests.session().get(lnk, headers=headers, stream=True, verify=True)
|
227 |
+
res = requests.session().get(get_url_from_gdrive_confirmation(res.text), headers=headers, stream=True, verify=True)
|
228 |
+
content_disposition = six.moves.urllib_parse.unquote(res.headers["Content-Disposition"])
|
229 |
+
filenm = re.search(r"filename\*=UTF-8''(.*)", content_disposition).groups()[0].replace(os.path.sep, "_")
|
230 |
+
return filenm
|
231 |
+
|
232 |
+
if src=='civitai':
|
233 |
+
modelname=get_name(MODEL_LINK, False)
|
234 |
+
elif src=='gdrive':
|
235 |
+
modelname=get_name(MODEL_LINK, True)
|
236 |
+
else:
|
237 |
+
modelname=os.path.basename(MODEL_LINK)
|
238 |
+
|
239 |
+
|
240 |
+
os.chdir('/workspace')
|
241 |
+
if src=='huggingface':
|
242 |
+
dwn(MODEL_LINK, modelname,'[1;33mDownloading the Model')
|
243 |
+
else:
|
244 |
+
call("gdown --fuzzy " +MODEL_LINK+ " -O "+modelname, shell=True)
|
245 |
+
|
246 |
+
if os.path.exists(modelname):
|
247 |
+
if os.path.getsize(modelname) > 1810671599:
|
248 |
+
|
249 |
+
print('[1;32mConverting to diffusers...')
|
250 |
+
call('python /workspace/diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path '+modelname+' --dump_path stable-diffusion-custom --from_safetensors', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
251 |
+
|
252 |
+
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
253 |
+
os.chdir('/workspace')
|
254 |
+
clear_output()
|
255 |
+
done()
|
256 |
+
else:
|
257 |
+
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
258 |
+
print('[1;31mConversion error')
|
259 |
+
os.chdir('/workspace')
|
260 |
+
time.sleep(5)
|
261 |
+
else:
|
262 |
+
while os.path.getsize(modelname) < 1810671599:
|
263 |
+
print('[1;31mWrong link, check that the link is valid')
|
264 |
+
os.chdir('/workspace')
|
265 |
+
time.sleep(5)
|
266 |
+
|
267 |
+
|
268 |
+
|
269 |
+
def downloadmodel_path_xl(MODEL_PATH):
|
270 |
+
|
271 |
+
import wget
|
272 |
+
os.chdir('/workspace')
|
273 |
+
clear_output()
|
274 |
+
if os.path.exists(str(MODEL_PATH)):
|
275 |
+
|
276 |
+
print('[1;32mConverting to diffusers...')
|
277 |
+
call('python /workspace/diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path '+MODEL_PATH+' --dump_path stable-diffusion-custom --from_safetensors', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
278 |
+
|
279 |
+
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
280 |
+
clear_output()
|
281 |
+
done()
|
282 |
+
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
283 |
+
print('[1;31mConversion error')
|
284 |
+
os.chdir('/workspace')
|
285 |
+
time.sleep(5)
|
286 |
+
else:
|
287 |
+
while not os.path.exists(str(MODEL_PATH)):
|
288 |
+
print('[1;31mWrong path, use the file explorer to copy the path')
|
289 |
+
os.chdir('/workspace')
|
290 |
+
time.sleep(5)
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
|
295 |
+
def dls_xlf(Path_to_HuggingFace, MODEL_PATH, MODEL_LINK):
|
296 |
+
|
297 |
+
os.chdir('/workspace')
|
298 |
+
|
299 |
+
if Path_to_HuggingFace != "":
|
300 |
+
downloadmodel_hfxl(Path_to_HuggingFace)
|
301 |
+
MODEL_NAMExl="/workspace/stable-diffusion-custom"
|
302 |
+
|
303 |
+
elif MODEL_PATH !="":
|
304 |
+
|
305 |
+
downloadmodel_path_xl(MODEL_PATH)
|
306 |
+
MODEL_NAMExl="/workspace/stable-diffusion-custom"
|
307 |
+
|
308 |
+
elif MODEL_LINK !="":
|
309 |
+
|
310 |
+
downloadmodel_link_xl(MODEL_LINK)
|
311 |
+
MODEL_NAMExl="/workspace/stable-diffusion-custom"
|
312 |
+
|
313 |
+
else:
|
314 |
+
mdlvxl()
|
315 |
+
MODEL_NAMExl="/workspace/stable-diffusion-XL"
|
316 |
+
|
317 |
+
return MODEL_NAMExl
|
318 |
+
|
319 |
+
|
320 |
+
|
321 |
+
def sess_xl(Session_Name, MODEL_NAMExl):
|
322 |
+
import gdown
|
323 |
+
import wget
|
324 |
+
os.chdir('/workspace')
|
325 |
+
PT=""
|
326 |
+
|
327 |
+
while Session_Name=="":
|
328 |
+
print('[1;31mInput the Session Name:')
|
329 |
+
Session_Name=input("")
|
330 |
+
Session_Name=Session_Name.replace(" ","_")
|
331 |
+
|
332 |
+
WORKSPACE='/workspace/Fast-Dreambooth'
|
333 |
+
|
334 |
+
INSTANCE_NAME=Session_Name
|
335 |
+
OUTPUT_DIR="/workspace/models/"+Session_Name
|
336 |
+
SESSION_DIR=WORKSPACE+"/Sessions/"+Session_Name
|
337 |
+
INSTANCE_DIR=SESSION_DIR+"/instance_images"
|
338 |
+
CAPTIONS_DIR=SESSION_DIR+'/captions'
|
339 |
+
MDLPTH=str(SESSION_DIR+"/"+Session_Name+'.safetensors')
|
340 |
+
|
341 |
+
|
342 |
+
if os.path.exists(str(SESSION_DIR)) and not os.path.exists(MDLPTH):
|
343 |
+
print('[1;32mLoading session with no previous LoRa model')
|
344 |
+
if MODEL_NAMExl=="":
|
345 |
+
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
|
346 |
+
else:
|
347 |
+
print('[1;32mSession Loaded, proceed')
|
348 |
+
|
349 |
+
elif not os.path.exists(str(SESSION_DIR)):
|
350 |
+
call('mkdir -p '+INSTANCE_DIR, shell=True)
|
351 |
+
print('[1;32mCreating session...')
|
352 |
+
if MODEL_NAMExl=="":
|
353 |
+
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
|
354 |
+
else:
|
355 |
+
print('[1;32mSession created, proceed to uploading instance images')
|
356 |
+
if MODEL_NAMExl=="":
|
357 |
+
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
|
358 |
+
|
359 |
+
else:
|
360 |
+
print('[1;32mSession Loaded, proceed')
|
361 |
+
|
362 |
+
|
363 |
+
return WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMExl
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
def uplder(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR):
|
368 |
+
|
369 |
+
if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
|
370 |
+
call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)
|
371 |
+
|
372 |
+
uploader = widgets.FileUpload(description="Choose images",accept='image/*, .txt', multiple=True)
|
373 |
+
Upload = widgets.Button(
|
374 |
+
description='Upload',
|
375 |
+
disabled=False,
|
376 |
+
button_style='info',
|
377 |
+
tooltip='Click to upload the chosen instance images',
|
378 |
+
icon=''
|
379 |
+
)
|
380 |
+
|
381 |
+
|
382 |
+
def up(Upload):
|
383 |
+
with out:
|
384 |
+
uploader.close()
|
385 |
+
Upload.close()
|
386 |
+
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader)
|
387 |
+
done()
|
388 |
+
out=widgets.Output()
|
389 |
+
|
390 |
+
if IMAGES_FOLDER_OPTIONAL=="":
|
391 |
+
Upload.on_click(up)
|
392 |
+
display(uploader, Upload, out)
|
393 |
+
else:
|
394 |
+
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader)
|
395 |
+
done()
|
396 |
+
|
397 |
+
|
398 |
+
|
399 |
+
def upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader):
|
400 |
+
|
401 |
+
from tqdm import tqdm
|
402 |
+
if Remove_existing_instance_images:
|
403 |
+
if os.path.exists(str(INSTANCE_DIR)):
|
404 |
+
call("rm -r " +INSTANCE_DIR, shell=True)
|
405 |
+
if os.path.exists(str(CAPTIONS_DIR)):
|
406 |
+
call("rm -r " +CAPTIONS_DIR, shell=True)
|
407 |
+
|
408 |
+
|
409 |
+
if not os.path.exists(str(INSTANCE_DIR)):
|
410 |
+
call("mkdir -p " +INSTANCE_DIR, shell=True)
|
411 |
+
if not os.path.exists(str(CAPTIONS_DIR)):
|
412 |
+
call("mkdir -p " +CAPTIONS_DIR, shell=True)
|
413 |
+
|
414 |
+
|
415 |
+
if IMAGES_FOLDER_OPTIONAL !="":
|
416 |
+
if os.path.exists(IMAGES_FOLDER_OPTIONAL+"/.ipynb_checkpoints"):
|
417 |
+
call('rm -r '+IMAGES_FOLDER_OPTIONAL+'/.ipynb_checkpoints', shell=True)
|
418 |
+
|
419 |
+
if any(file.endswith('.{}'.format('txt')) for file in os.listdir(IMAGES_FOLDER_OPTIONAL)):
|
420 |
+
call('mv '+IMAGES_FOLDER_OPTIONAL+'/*.txt '+CAPTIONS_DIR, shell=True)
|
421 |
+
if Crop_images:
|
422 |
+
os.chdir(str(IMAGES_FOLDER_OPTIONAL))
|
423 |
+
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
|
424 |
+
os.chdir('/workspace')
|
425 |
+
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
|
426 |
+
extension = filename.split(".")[-1]
|
427 |
+
identifier=filename.split(".")[0]
|
428 |
+
new_path_with_file = os.path.join(INSTANCE_DIR, filename)
|
429 |
+
file = Image.open(IMAGES_FOLDER_OPTIONAL+"/"+filename)
|
430 |
+
file=file.convert("RGB")
|
431 |
+
file=ImageOps.exif_transpose(file)
|
432 |
+
width, height = file.size
|
433 |
+
if file.size !=(Crop_size, Crop_size):
|
434 |
+
image=crop_image(file, Crop_size)
|
435 |
+
if extension.upper()=="JPG" or extension.upper()=="jpg":
|
436 |
+
image[0].save(new_path_with_file, format="JPEG", quality = 100)
|
437 |
+
else:
|
438 |
+
image[0].save(new_path_with_file, format=extension.upper())
|
439 |
+
|
440 |
+
else:
|
441 |
+
call("cp \'"+IMAGES_FOLDER_OPTIONAL+"/"+filename+"\' "+INSTANCE_DIR, shell=True)
|
442 |
+
|
443 |
+
else:
|
444 |
+
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
|
445 |
+
call("cp -r " +IMAGES_FOLDER_OPTIONAL+"/. " +INSTANCE_DIR, shell=True)
|
446 |
+
|
447 |
+
elif IMAGES_FOLDER_OPTIONAL =="":
|
448 |
+
up=""
|
449 |
+
for file in uploader.value:
|
450 |
+
filename = file['name']
|
451 |
+
if filename.split(".")[-1]=="txt":
|
452 |
+
with open(CAPTIONS_DIR+'/'+filename, 'w') as f:
|
453 |
+
f.write(bytes(file['content']).decode())
|
454 |
+
up=[file for file in uploader.value if not file['name'].endswith('.txt')]
|
455 |
+
if Crop_images:
|
456 |
+
for file in tqdm(up, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
|
457 |
+
filename = file['name']
|
458 |
+
img = Image.open(io.BytesIO(file['content']))
|
459 |
+
img=img.convert("RGB")
|
460 |
+
img=ImageOps.exif_transpose(img)
|
461 |
+
extension = filename.split(".")[-1]
|
462 |
+
identifier=filename.split(".")[0]
|
463 |
+
|
464 |
+
if extension.upper()=="JPG" or extension.upper()=="jpg":
|
465 |
+
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
|
466 |
+
else:
|
467 |
+
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
|
468 |
+
|
469 |
+
new_path_with_file = os.path.join(INSTANCE_DIR, filename)
|
470 |
+
file = Image.open(new_path_with_file)
|
471 |
+
width, height = file.size
|
472 |
+
if file.size !=(Crop_size, Crop_size):
|
473 |
+
image=crop_image(file, Crop_size)
|
474 |
+
if extension.upper()=="JPG" or extension.upper()=="jpg":
|
475 |
+
image[0].save(new_path_with_file, format="JPEG", quality = 100)
|
476 |
+
else:
|
477 |
+
image[0].save(new_path_with_file, format=extension.upper())
|
478 |
+
|
479 |
+
else:
|
480 |
+
for file in tqdm(uploader.value, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
|
481 |
+
filename = file['name']
|
482 |
+
img = Image.open(io.BytesIO(file['content']))
|
483 |
+
img=img.convert("RGB")
|
484 |
+
extension = filename.split(".")[-1]
|
485 |
+
identifier=filename.split(".")[0]
|
486 |
+
|
487 |
+
if extension.upper()=="JPG" or extension.upper()=="jpg":
|
488 |
+
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
|
489 |
+
else:
|
490 |
+
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
|
491 |
+
|
492 |
+
|
493 |
+
os.chdir(INSTANCE_DIR)
|
494 |
+
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
|
495 |
+
os.chdir(CAPTIONS_DIR)
|
496 |
+
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
|
497 |
+
os.chdir('/workspace')
|
498 |
+
|
499 |
+
|
500 |
+
|
501 |
+
|
502 |
+
def caption(CAPTIONS_DIR, INSTANCE_DIR):
|
503 |
+
|
504 |
+
paths=""
|
505 |
+
out=""
|
506 |
+
widgets_l=""
|
507 |
+
clear_output()
|
508 |
+
def Caption(path):
|
509 |
+
if path!="Select an instance image to caption":
|
510 |
+
|
511 |
+
name = os.path.splitext(os.path.basename(path))[0]
|
512 |
+
ext=os.path.splitext(os.path.basename(path))[-1][1:]
|
513 |
+
if ext=="jpg" or "JPG":
|
514 |
+
ext="JPEG"
|
515 |
+
|
516 |
+
if os.path.exists(CAPTIONS_DIR+"/"+name + '.txt'):
|
517 |
+
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
|
518 |
+
text = f.read()
|
519 |
+
else:
|
520 |
+
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
|
521 |
+
f.write("")
|
522 |
+
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
|
523 |
+
text = f.read()
|
524 |
+
|
525 |
+
img=Image.open(os.path.join(INSTANCE_DIR,path))
|
526 |
+
img=img.convert("RGB")
|
527 |
+
img=img.resize((420, 420))
|
528 |
+
image_bytes = BytesIO()
|
529 |
+
img.save(image_bytes, format=ext, qualiy=10)
|
530 |
+
image_bytes.seek(0)
|
531 |
+
image_data = image_bytes.read()
|
532 |
+
img= image_data
|
533 |
+
image = widgets.Image(
|
534 |
+
value=img,
|
535 |
+
width=420,
|
536 |
+
height=420
|
537 |
+
)
|
538 |
+
text_area = widgets.Textarea(value=text, description='', disabled=False, layout={'width': '300px', 'height': '120px'})
|
539 |
+
|
540 |
+
|
541 |
+
def update_text(text):
|
542 |
+
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
|
543 |
+
f.write(text)
|
544 |
+
|
545 |
+
button = widgets.Button(description='Save', button_style='success')
|
546 |
+
button.on_click(lambda b: update_text(text_area.value))
|
547 |
+
|
548 |
+
return widgets.VBox([widgets.HBox([image, text_area, button])])
|
549 |
+
|
550 |
+
|
551 |
+
paths = os.listdir(INSTANCE_DIR)
|
552 |
+
widgets_l = widgets.Select(options=["Select an instance image to caption"]+paths, rows=25)
|
553 |
+
|
554 |
+
|
555 |
+
out = widgets.Output()
|
556 |
+
|
557 |
+
def click(change):
|
558 |
+
with out:
|
559 |
+
out.clear_output()
|
560 |
+
display(Caption(change.new))
|
561 |
+
|
562 |
+
widgets_l.observe(click, names='value')
|
563 |
+
display(widgets.HBox([widgets_l, out]))
|
564 |
+
|
565 |
+
|
566 |
+
|
567 |
+
def dbtrainxl(Unet_Training_Epochs, Text_Encoder_Training_Epochs, Unet_Learning_Rate, Text_Encoder_Learning_Rate, dim, Offset_Noise, Resolution, MODEL_NAME, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, ofstnselvl, Save_VRAM):
|
568 |
+
|
569 |
+
|
570 |
+
if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
|
571 |
+
call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)
|
572 |
+
if os.path.exists(CAPTIONS_DIR+"/.ipynb_checkpoints"):
|
573 |
+
call('rm -r '+CAPTIONS_DIR+'/.ipynb_checkpoints', shell=True)
|
574 |
+
|
575 |
+
|
576 |
+
Seed=random.randint(1, 999999)
|
577 |
+
|
578 |
+
ofstnse=""
|
579 |
+
if Offset_Noise:
|
580 |
+
ofstnse="--offset_noise"
|
581 |
+
|
582 |
+
GC=''
|
583 |
+
if Save_VRAM:
|
584 |
+
GC='--gradient_checkpointing'
|
585 |
+
|
586 |
+
extrnlcptn=""
|
587 |
+
if External_Captions:
|
588 |
+
extrnlcptn="--external_captions"
|
589 |
+
|
590 |
+
precision="fp16"
|
591 |
+
|
592 |
+
|
593 |
+
|
594 |
+
def train_only_text(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs):
|
595 |
+
print('[1;33mTraining the Text Encoder...[0m')
|
596 |
+
call('accelerate launch /workspace/diffusers/examples/dreambooth/train_dreambooth_rnpd_sdxl_TI.py \
|
597 |
+
'+ofstnse+' \
|
598 |
+
'+extrnlcptn+' \
|
599 |
+
--dim='+str(dim)+' \
|
600 |
+
--ofstnselvl='+str(ofstnselvl)+' \
|
601 |
+
--image_captions_filename \
|
602 |
+
--Session_dir='+SESSION_DIR+' \
|
603 |
+
--pretrained_model_name_or_path='+MODEL_NAME+' \
|
604 |
+
--instance_data_dir='+INSTANCE_DIR+' \
|
605 |
+
--output_dir='+OUTPUT_DIR+' \
|
606 |
+
--captions_dir='+CAPTIONS_DIR+' \
|
607 |
+
--seed='+str(Seed)+' \
|
608 |
+
--resolution='+str(Resolution)+' \
|
609 |
+
--mixed_precision='+str(precision)+' \
|
610 |
+
--train_batch_size=1 \
|
611 |
+
--gradient_accumulation_steps=1 '+GC+ ' \
|
612 |
+
--use_8bit_adam \
|
613 |
+
--learning_rate='+str(Text_Encoder_Learning_Rate)+' \
|
614 |
+
--lr_scheduler="cosine" \
|
615 |
+
--lr_warmup_steps=0 \
|
616 |
+
--num_train_epochs='+str(Training_Epochs), shell=True)
|
617 |
+
|
618 |
+
|
619 |
+
|
620 |
+
def train_only_unet(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs):
|
621 |
+
print('[1;33mTraining the UNet...[0m')
|
622 |
+
call('accelerate launch /workspace/diffusers/examples/dreambooth/train_dreambooth_rnpd_sdxl_lora.py \
|
623 |
+
'+ofstnse+' \
|
624 |
+
'+extrnlcptn+' \
|
625 |
+
--dim='+str(dim)+' \
|
626 |
+
--ofstnselvl='+str(ofstnselvl)+' \
|
627 |
+
--image_captions_filename \
|
628 |
+
--Session_dir='+SESSION_DIR+' \
|
629 |
+
--pretrained_model_name_or_path='+MODEL_NAME+' \
|
630 |
+
--instance_data_dir='+INSTANCE_DIR+' \
|
631 |
+
--output_dir='+OUTPUT_DIR+' \
|
632 |
+
--captions_dir='+CAPTIONS_DIR+' \
|
633 |
+
--seed='+str(Seed)+' \
|
634 |
+
--resolution='+str(Resolution)+' \
|
635 |
+
--mixed_precision='+str(precision)+' \
|
636 |
+
--train_batch_size=1 \
|
637 |
+
--gradient_accumulation_steps=1 '+GC+ ' \
|
638 |
+
--use_8bit_adam \
|
639 |
+
--learning_rate='+str(Unet_Learning_Rate)+' \
|
640 |
+
--lr_scheduler="cosine" \
|
641 |
+
--lr_warmup_steps=0 \
|
642 |
+
--num_train_epochs='+str(Training_Epochs), shell=True)
|
643 |
+
|
644 |
+
|
645 |
+
|
646 |
+
if Unet_Training_Epochs!=0:
|
647 |
+
if Text_Encoder_Training_Epochs!=0:
|
648 |
+
train_only_text(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs=Text_Encoder_Training_Epochs)
|
649 |
+
clear_output()
|
650 |
+
train_only_unet(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs=Unet_Training_Epochs)
|
651 |
+
else :
|
652 |
+
print('[1;32mNothing to do')
|
653 |
+
|
654 |
+
|
655 |
+
if os.path.exists(SESSION_DIR+'/'+Session_Name+'.safetensors'):
|
656 |
+
clear_output()
|
657 |
+
print("[1;32mDONE, the LoRa model is in the session's folder")
|
658 |
+
else:
|
659 |
+
print("[1;31mSomething went wrong")
|
660 |
+
|
661 |
+
|
662 |
+
|
663 |
+
|
664 |
+
def sdcmff(Huggingface_token_optional, MDLPTH, restored):
|
665 |
+
|
666 |
+
from slugify import slugify
|
667 |
+
from huggingface_hub import HfApi, CommitOperationAdd, create_repo
|
668 |
+
|
669 |
+
os.chdir('/workspace')
|
670 |
+
|
671 |
+
if restored:
|
672 |
+
Huggingface_token_optional=""
|
673 |
+
|
674 |
+
if Huggingface_token_optional!="":
|
675 |
+
username = HfApi().whoami(Huggingface_token_optional)["name"]
|
676 |
+
backup=f"https://huggingface.co/datasets/{username}/fast-stable-diffusion/resolve/main/sdcomfy_backup_rnpd.tar.zst"
|
677 |
+
headers = {"Authorization": f"Bearer {Huggingface_token_optional}"}
|
678 |
+
response = requests.head(backup, headers=headers)
|
679 |
+
if response.status_code == 302:
|
680 |
+
restored=True
|
681 |
+
print('[1;33mRestoring ComfyUI...')
|
682 |
+
open('/workspace/sdcomfy_backup_rnpd.tar.zst', 'wb').write(requests.get(backup, headers=headers).content)
|
683 |
+
call('tar --zstd -xf sdcomfy_backup_rnpd.tar.zst', shell=True)
|
684 |
+
call('rm sdcomfy_backup_rnpd.tar.zst', shell=True)
|
685 |
+
else:
|
686 |
+
print('[1;33mBackup not found, using a fresh/existing repo...')
|
687 |
+
time.sleep(2)
|
688 |
+
if not os.path.exists('ComfyUI'):
|
689 |
+
call('git clone -q --depth 1 https://github.com/comfyanonymous/ComfyUI', shell=True)
|
690 |
+
else:
|
691 |
+
print('[1;33mInstalling/Updating the repo...')
|
692 |
+
if not os.path.exists('ComfyUI'):
|
693 |
+
call('git clone -q --depth 1 https://github.com/comfyanonymous/ComfyUI', shell=True)
|
694 |
+
|
695 |
+
os.chdir('ComfyUI')
|
696 |
+
call('git reset --hard', shell=True)
|
697 |
+
print('[1;32m')
|
698 |
+
call('git pull', shell=True)
|
699 |
+
|
700 |
+
if os.path.exists(MDLPTH):
|
701 |
+
call('ln -s '+MDLPTH+' models/loras', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
702 |
+
|
703 |
+
clean_symlinks('models/loras')
|
704 |
+
|
705 |
+
if not os.path.exists('models/checkpoints/sd_xl_base_1.0.safetensors'):
|
706 |
+
call('ln -s /workspace/auto-models/* models/checkpoints', shell=True)
|
707 |
+
|
708 |
+
|
709 |
+
podid=os.environ.get('RUNPOD_POD_ID')
|
710 |
+
localurl=f"https://{podid}-3001.proxy.runpod.net"
|
711 |
+
call("sed -i 's@print(\"To see the GUI go to: http://{}:{}\".format(address, port))@print(\"[32m\u2714 Connected\")\\n print(\"[1;34m"+localurl+"[0m\")@' /workspace/ComfyUI/server.py", shell=True)
|
712 |
+
os.chdir('/workspace')
|
713 |
+
|
714 |
+
return restored
|
715 |
+
|
716 |
+
|
717 |
+
|
718 |
+
|
719 |
+
def test(MDLPTH, User, Password, Huggingface_token_optional, restoreda):
|
720 |
+
|
721 |
+
from slugify import slugify
|
722 |
+
from huggingface_hub import HfApi, CommitOperationAdd, create_repo
|
723 |
+
import gradio
|
724 |
+
|
725 |
+
gradio.close_all()
|
726 |
+
|
727 |
+
|
728 |
+
auth=f"--gradio-auth {User}:{Password}"
|
729 |
+
if User =="" or Password=="":
|
730 |
+
auth=""
|
731 |
+
|
732 |
+
|
733 |
+
if restoreda:
|
734 |
+
Huggingface_token_optional=""
|
735 |
+
|
736 |
+
if Huggingface_token_optional!="":
|
737 |
+
username = HfApi().whoami(Huggingface_token_optional)["name"]
|
738 |
+
backup=f"https://huggingface.co/datasets/{username}/fast-stable-diffusion/resolve/main/sd_backup_rnpd.tar.zst"
|
739 |
+
headers = {"Authorization": f"Bearer {Huggingface_token_optional}"}
|
740 |
+
response = requests.head(backup, headers=headers)
|
741 |
+
if response.status_code == 302:
|
742 |
+
restoreda=True
|
743 |
+
print('[1;33mRestoring the SD folder...')
|
744 |
+
open('/workspace/sd_backup_rnpd.tar.zst', 'wb').write(requests.get(backup, headers=headers).content)
|
745 |
+
call('tar --zstd -xf sd_backup_rnpd.tar.zst', shell=True)
|
746 |
+
call('rm sd_backup_rnpd.tar.zst', shell=True)
|
747 |
+
else:
|
748 |
+
print('[1;33mBackup not found, using a fresh/existing repo...')
|
749 |
+
time.sleep(2)
|
750 |
+
if not os.path.exists('/workspace/sd/stablediffusiond'): #reset later
|
751 |
+
call('wget -q -O sd_mrep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_mrep.tar.zst', shell=True)
|
752 |
+
call('tar --zstd -xf sd_mrep.tar.zst', shell=True)
|
753 |
+
call('rm sd_mrep.tar.zst', shell=True)
|
754 |
+
os.chdir('/workspace/sd')
|
755 |
+
if not os.path.exists('stable-diffusion-webui'):
|
756 |
+
call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True)
|
757 |
+
|
758 |
+
else:
|
759 |
+
print('[1;33mInstalling/Updating the repo...')
|
760 |
+
os.chdir('/workspace')
|
761 |
+
if not os.path.exists('/workspace/sd/stablediffusiond'): #reset later
|
762 |
+
call('wget -q -O sd_mrep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_mrep.tar.zst', shell=True)
|
763 |
+
call('tar --zstd -xf sd_mrep.tar.zst', shell=True)
|
764 |
+
call('rm sd_mrep.tar.zst', shell=True)
|
765 |
+
|
766 |
+
os.chdir('/workspace/sd')
|
767 |
+
if not os.path.exists('stable-diffusion-webui'):
|
768 |
+
call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True)
|
769 |
+
|
770 |
+
|
771 |
+
os.chdir('/workspace/sd/stable-diffusion-webui/')
|
772 |
+
call('git reset --hard', shell=True)
|
773 |
+
print('[1;32m')
|
774 |
+
call('git pull', shell=True)
|
775 |
+
|
776 |
+
|
777 |
+
if os.path.exists(MDLPTH):
|
778 |
+
call('mkdir models/Lora', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
779 |
+
call('ln -s '+MDLPTH+' models/Lora', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
|
780 |
+
|
781 |
+
if not os.path.exists('models/Stable-diffusion/sd_xl_base_1.0.safetensors'):
|
782 |
+
call('ln -s /workspace/auto-models/* models/Stable-diffusion', shell=True)
|
783 |
+
|
784 |
+
clean_symlinks('models/Lora')
|
785 |
+
|
786 |
+
os.chdir('/workspace')
|
787 |
+
|
788 |
+
|
789 |
+
call('wget -q -O /usr/local/lib/python3.10/dist-packages/gradio/blocks.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/blocks.py', shell=True)
|
790 |
+
|
791 |
+
os.chdir('/workspace/sd/stable-diffusion-webui/modules')
|
792 |
+
|
793 |
+
call("sed -i 's@possible_sd_paths =.*@possible_sd_paths = [\"/workspace/sd/stablediffusion\"]@' /workspace/sd/stable-diffusion-webui/modules/paths.py", shell=True)
|
794 |
+
call("sed -i 's@\.\.\/@src/@g' /workspace/sd/stable-diffusion-webui/modules/paths.py", shell=True)
|
795 |
+
call("sed -i 's@src\/generative-models@generative-models@g' /workspace/sd/stable-diffusion-webui/modules/paths.py", shell=True)
|
796 |
+
|
797 |
+
call("sed -i 's@\[\"sd_model_checkpoint\"\]@\[\"sd_model_checkpoint\", \"sd_vae\", \"CLIP_stop_at_last_layers\", \"inpainting_mask_weight\", \"initial_noise_multiplier\"\]@g' /workspace/sd/stable-diffusion-webui/modules/shared.py", shell=True)
|
798 |
+
call("sed -i 's@print(\"No module.*@@' /workspace/sd/stablediffusion/ldm/modules/diffusionmodules/model.py", shell=True)
|
799 |
+
os.chdir('/workspace/sd/stable-diffusion-webui')
|
800 |
+
clear_output()
|
801 |
+
|
802 |
+
podid=os.environ.get('RUNPOD_POD_ID')
|
803 |
+
localurl=f"{podid}-3001.proxy.runpod.net"
|
804 |
+
|
805 |
+
for line in fileinput.input('/usr/local/lib/python3.10/dist-packages/gradio/blocks.py', inplace=True):
|
806 |
+
if line.strip().startswith('self.server_name ='):
|
807 |
+
line = f' self.server_name = "{localurl}"\n'
|
808 |
+
if line.strip().startswith('self.protocol = "https"'):
|
809 |
+
line = ' self.protocol = "https"\n'
|
810 |
+
if line.strip().startswith('if self.local_url.startswith("https") or self.is_colab'):
|
811 |
+
line = ''
|
812 |
+
if line.strip().startswith('else "http"'):
|
813 |
+
line = ''
|
814 |
+
sys.stdout.write(line)
|
815 |
+
|
816 |
+
|
817 |
+
configf="--disable-console-progressbars --upcast-sampling --no-half-vae --disable-safe-unpickle --api --opt-sdp-attention --enable-insecure-extension-access --no-download-sd-model --skip-version-check --listen --port 3000 --ckpt /workspace/sd/stable-diffusion-webui/models/Stable-diffusion/sd_xl_base_1.0.safetensors "+auth
|
818 |
+
|
819 |
+
|
820 |
+
return configf, restoreda
|
821 |
+
|
822 |
+
|
823 |
+
|
824 |
+
|
825 |
+
def clean():
|
826 |
+
|
827 |
+
Sessions=os.listdir("/workspace/Fast-Dreambooth/Sessions")
|
828 |
+
|
829 |
+
s = widgets.Select(
|
830 |
+
options=Sessions,
|
831 |
+
rows=5,
|
832 |
+
description='',
|
833 |
+
disabled=False
|
834 |
+
)
|
835 |
+
|
836 |
+
out=widgets.Output()
|
837 |
+
|
838 |
+
d = widgets.Button(
|
839 |
+
description='Remove',
|
840 |
+
disabled=False,
|
841 |
+
button_style='warning',
|
842 |
+
tooltip='Removet the selected session',
|
843 |
+
icon='warning'
|
844 |
+
)
|
845 |
+
|
846 |
+
def rem(d):
|
847 |
+
with out:
|
848 |
+
if s.value is not None:
|
849 |
+
clear_output()
|
850 |
+
print("[1;33mTHE SESSION [1;31m"+s.value+" [1;33mHAS BEEN REMOVED FROM THE STORAGE")
|
851 |
+
call('rm -r /workspace/Fast-Dreambooth/Sessions/'+s.value, shell=True)
|
852 |
+
if os.path.exists('/workspace/models/'+s.value):
|
853 |
+
call('rm -r /workspace/models/'+s.value, shell=True)
|
854 |
+
s.options=os.listdir("/workspace/Fast-Dreambooth/Sessions")
|
855 |
+
|
856 |
+
|
857 |
+
else:
|
858 |
+
d.close()
|
859 |
+
s.close()
|
860 |
+
clear_output()
|
861 |
+
print("[1;32mNOTHING TO REMOVE")
|
862 |
+
|
863 |
+
d.on_click(rem)
|
864 |
+
if s.value is not None:
|
865 |
+
display(s,d,out)
|
866 |
+
else:
|
867 |
+
print("[1;32mNOTHING TO REMOVE")
|
868 |
+
|
869 |
+
|
870 |
+
|
871 |
+
def crop_image(im, size):
|
872 |
+
|
873 |
+
import cv2
|
874 |
+
|
875 |
+
GREEN = "#0F0"
|
876 |
+
BLUE = "#00F"
|
877 |
+
RED = "#F00"
|
878 |
+
|
879 |
+
def focal_point(im, settings):
|
880 |
+
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
|
881 |
+
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
|
882 |
+
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
|
883 |
+
|
884 |
+
pois = []
|
885 |
+
|
886 |
+
weight_pref_total = 0
|
887 |
+
if len(corner_points) > 0:
|
888 |
+
weight_pref_total += settings.corner_points_weight
|
889 |
+
if len(entropy_points) > 0:
|
890 |
+
weight_pref_total += settings.entropy_points_weight
|
891 |
+
if len(face_points) > 0:
|
892 |
+
weight_pref_total += settings.face_points_weight
|
893 |
+
|
894 |
+
corner_centroid = None
|
895 |
+
if len(corner_points) > 0:
|
896 |
+
corner_centroid = centroid(corner_points)
|
897 |
+
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
|
898 |
+
pois.append(corner_centroid)
|
899 |
+
|
900 |
+
entropy_centroid = None
|
901 |
+
if len(entropy_points) > 0:
|
902 |
+
entropy_centroid = centroid(entropy_points)
|
903 |
+
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
|
904 |
+
pois.append(entropy_centroid)
|
905 |
+
|
906 |
+
face_centroid = None
|
907 |
+
if len(face_points) > 0:
|
908 |
+
face_centroid = centroid(face_points)
|
909 |
+
face_centroid.weight = settings.face_points_weight / weight_pref_total
|
910 |
+
pois.append(face_centroid)
|
911 |
+
|
912 |
+
average_point = poi_average(pois, settings)
|
913 |
+
|
914 |
+
return average_point
|
915 |
+
|
916 |
+
|
917 |
+
def image_face_points(im, settings):
|
918 |
+
|
919 |
+
np_im = np.array(im)
|
920 |
+
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
921 |
+
|
922 |
+
tries = [
|
923 |
+
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
|
924 |
+
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
|
925 |
+
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
|
926 |
+
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
|
927 |
+
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
|
928 |
+
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
|
929 |
+
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
|
930 |
+
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
|
931 |
+
]
|
932 |
+
for t in tries:
|
933 |
+
classifier = cv2.CascadeClassifier(t[0])
|
934 |
+
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
935 |
+
try:
|
936 |
+
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
937 |
+
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
938 |
+
except:
|
939 |
+
continue
|
940 |
+
|
941 |
+
if len(faces) > 0:
|
942 |
+
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
943 |
+
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
|
944 |
+
return []
|
945 |
+
|
946 |
+
|
947 |
+
def image_corner_points(im, settings):
|
948 |
+
grayscale = im.convert("L")
|
949 |
+
|
950 |
+
# naive attempt at preventing focal points from collecting at watermarks near the bottom
|
951 |
+
gd = ImageDraw.Draw(grayscale)
|
952 |
+
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
|
953 |
+
|
954 |
+
np_im = np.array(grayscale)
|
955 |
+
|
956 |
+
points = cv2.goodFeaturesToTrack(
|
957 |
+
np_im,
|
958 |
+
maxCorners=100,
|
959 |
+
qualityLevel=0.04,
|
960 |
+
minDistance=min(grayscale.width, grayscale.height)*0.06,
|
961 |
+
useHarrisDetector=False,
|
962 |
+
)
|
963 |
+
|
964 |
+
if points is None:
|
965 |
+
return []
|
966 |
+
|
967 |
+
focal_points = []
|
968 |
+
for point in points:
|
969 |
+
x, y = point.ravel()
|
970 |
+
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
|
971 |
+
|
972 |
+
return focal_points
|
973 |
+
|
974 |
+
|
975 |
+
def image_entropy_points(im, settings):
|
976 |
+
landscape = im.height < im.width
|
977 |
+
portrait = im.height > im.width
|
978 |
+
if landscape:
|
979 |
+
move_idx = [0, 2]
|
980 |
+
move_max = im.size[0]
|
981 |
+
elif portrait:
|
982 |
+
move_idx = [1, 3]
|
983 |
+
move_max = im.size[1]
|
984 |
+
else:
|
985 |
+
return []
|
986 |
+
|
987 |
+
e_max = 0
|
988 |
+
crop_current = [0, 0, settings.crop_width, settings.crop_height]
|
989 |
+
crop_best = crop_current
|
990 |
+
while crop_current[move_idx[1]] < move_max:
|
991 |
+
crop = im.crop(tuple(crop_current))
|
992 |
+
e = image_entropy(crop)
|
993 |
+
|
994 |
+
if (e > e_max):
|
995 |
+
e_max = e
|
996 |
+
crop_best = list(crop_current)
|
997 |
+
|
998 |
+
crop_current[move_idx[0]] += 4
|
999 |
+
crop_current[move_idx[1]] += 4
|
1000 |
+
|
1001 |
+
x_mid = int(crop_best[0] + settings.crop_width/2)
|
1002 |
+
y_mid = int(crop_best[1] + settings.crop_height/2)
|
1003 |
+
|
1004 |
+
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
|
1005 |
+
|
1006 |
+
|
1007 |
+
def image_entropy(im):
|
1008 |
+
# greyscale image entropy
|
1009 |
+
# band = np.asarray(im.convert("L"))
|
1010 |
+
band = np.asarray(im.convert("1"), dtype=np.uint8)
|
1011 |
+
hist, _ = np.histogram(band, bins=range(0, 256))
|
1012 |
+
hist = hist[hist > 0]
|
1013 |
+
return -np.log2(hist / hist.sum()).sum()
|
1014 |
+
|
1015 |
+
def centroid(pois):
|
1016 |
+
x = [poi.x for poi in pois]
|
1017 |
+
y = [poi.y for poi in pois]
|
1018 |
+
return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))
|
1019 |
+
|
1020 |
+
|
1021 |
+
def poi_average(pois, settings):
|
1022 |
+
weight = 0.0
|
1023 |
+
x = 0.0
|
1024 |
+
y = 0.0
|
1025 |
+
for poi in pois:
|
1026 |
+
weight += poi.weight
|
1027 |
+
x += poi.x * poi.weight
|
1028 |
+
y += poi.y * poi.weight
|
1029 |
+
avg_x = round(weight and x / weight)
|
1030 |
+
avg_y = round(weight and y / weight)
|
1031 |
+
|
1032 |
+
return PointOfInterest(avg_x, avg_y)
|
1033 |
+
|
1034 |
+
|
1035 |
+
def is_landscape(w, h):
|
1036 |
+
return w > h
|
1037 |
+
|
1038 |
+
|
1039 |
+
def is_portrait(w, h):
|
1040 |
+
return h > w
|
1041 |
+
|
1042 |
+
|
1043 |
+
def is_square(w, h):
|
1044 |
+
return w == h
|
1045 |
+
|
1046 |
+
|
1047 |
+
class PointOfInterest:
|
1048 |
+
def __init__(self, x, y, weight=1.0, size=10):
|
1049 |
+
self.x = x
|
1050 |
+
self.y = y
|
1051 |
+
self.weight = weight
|
1052 |
+
self.size = size
|
1053 |
+
|
1054 |
+
def bounding(self, size):
|
1055 |
+
return [
|
1056 |
+
self.x - size//2,
|
1057 |
+
self.y - size//2,
|
1058 |
+
self.x + size//2,
|
1059 |
+
self.y + size//2
|
1060 |
+
]
|
1061 |
+
|
1062 |
+
class Settings:
|
1063 |
+
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5):
|
1064 |
+
self.crop_width = crop_width
|
1065 |
+
self.crop_height = crop_height
|
1066 |
+
self.corner_points_weight = corner_points_weight
|
1067 |
+
self.entropy_points_weight = entropy_points_weight
|
1068 |
+
self.face_points_weight = face_points_weight
|
1069 |
+
|
1070 |
+
settings = Settings(
|
1071 |
+
crop_width = size,
|
1072 |
+
crop_height = size,
|
1073 |
+
face_points_weight = 0.9,
|
1074 |
+
entropy_points_weight = 0.15,
|
1075 |
+
corner_points_weight = 0.5,
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
scale_by = 1
|
1079 |
+
if is_landscape(im.width, im.height):
|
1080 |
+
scale_by = settings.crop_height / im.height
|
1081 |
+
elif is_portrait(im.width, im.height):
|
1082 |
+
scale_by = settings.crop_width / im.width
|
1083 |
+
elif is_square(im.width, im.height):
|
1084 |
+
if is_square(settings.crop_width, settings.crop_height):
|
1085 |
+
scale_by = settings.crop_width / im.width
|
1086 |
+
elif is_landscape(settings.crop_width, settings.crop_height):
|
1087 |
+
scale_by = settings.crop_width / im.width
|
1088 |
+
elif is_portrait(settings.crop_width, settings.crop_height):
|
1089 |
+
scale_by = settings.crop_height / im.height
|
1090 |
+
|
1091 |
+
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
|
1092 |
+
im_debug = im.copy()
|
1093 |
+
|
1094 |
+
focus = focal_point(im_debug, settings)
|
1095 |
+
|
1096 |
+
# take the focal point and turn it into crop coordinates that try to center over the focal
|
1097 |
+
# point but then get adjusted back into the frame
|
1098 |
+
y_half = int(settings.crop_height / 2)
|
1099 |
+
x_half = int(settings.crop_width / 2)
|
1100 |
+
|
1101 |
+
x1 = focus.x - x_half
|
1102 |
+
if x1 < 0:
|
1103 |
+
x1 = 0
|
1104 |
+
elif x1 + settings.crop_width > im.width:
|
1105 |
+
x1 = im.width - settings.crop_width
|
1106 |
+
|
1107 |
+
y1 = focus.y - y_half
|
1108 |
+
if y1 < 0:
|
1109 |
+
y1 = 0
|
1110 |
+
elif y1 + settings.crop_height > im.height:
|
1111 |
+
y1 = im.height - settings.crop_height
|
1112 |
+
|
1113 |
+
x2 = x1 + settings.crop_width
|
1114 |
+
y2 = y1 + settings.crop_height
|
1115 |
+
|
1116 |
+
crop = [x1, y1, x2, y2]
|
1117 |
+
|
1118 |
+
results = []
|
1119 |
+
|
1120 |
+
results.append(im.crop(tuple(crop)))
|
1121 |
+
|
1122 |
+
return results
|
1123 |
+
|
1124 |
+
|
1125 |
+
|
1126 |
+
def clean_symlinks(path):
|
1127 |
+
for item in os.listdir(path):
|
1128 |
+
lnk = os.path.join(path, item)
|
1129 |
+
if os.path.islink(lnk) and not os.path.exists(os.readlink(lnk)):
|
1130 |
+
os.remove(lnk)
|
1131 |
+
|
train_dreambooth_rnpd_sdxl_lora.py
ADDED
@@ -0,0 +1,782 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import itertools
|
3 |
+
import math
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Optional
|
7 |
+
import subprocess
|
8 |
+
import sys
|
9 |
+
|
10 |
+
import gc
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torch.utils.checkpoint
|
14 |
+
from torch.utils.data import Dataset
|
15 |
+
from transformers import AutoTokenizer, PretrainedConfig
|
16 |
+
import bitsandbytes as bnb
|
17 |
+
|
18 |
+
from accelerate import Accelerator
|
19 |
+
from accelerate.logging import get_logger
|
20 |
+
from accelerate.utils import set_seed
|
21 |
+
from contextlib import nullcontext
|
22 |
+
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel
|
23 |
+
from diffusers.optimization import get_scheduler
|
24 |
+
from huggingface_hub import HfFolder, Repository, whoami
|
25 |
+
from PIL import Image
|
26 |
+
from torchvision import transforms
|
27 |
+
from tqdm import tqdm
|
28 |
+
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextConfig, CLIPTextModelWithProjection
|
29 |
+
|
30 |
+
from lora_sdxl import *
|
31 |
+
|
32 |
+
logger = get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
def import_model_class_from_model_name_or_path(
|
36 |
+
pretrained_model_name_or_path: str, subfolder: str = "text_encoder"
|
37 |
+
):
|
38 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
39 |
+
pretrained_model_name_or_path,
|
40 |
+
subfolder=subfolder,
|
41 |
+
use_auth_token=True
|
42 |
+
)
|
43 |
+
model_class = text_encoder_config.architectures[0]
|
44 |
+
|
45 |
+
if model_class == "CLIPTextModel":
|
46 |
+
from transformers import CLIPTextModel
|
47 |
+
|
48 |
+
return CLIPTextModel
|
49 |
+
elif model_class == "CLIPTextModelWithProjection":
|
50 |
+
from transformers import CLIPTextModelWithProjection
|
51 |
+
|
52 |
+
return CLIPTextModelWithProjection
|
53 |
+
else:
|
54 |
+
raise ValueError(f"{model_class} is not supported.")
|
55 |
+
|
56 |
+
|
57 |
+
def parse_args():
|
58 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
59 |
+
parser.add_argument(
|
60 |
+
"--pretrained_model_name_or_path",
|
61 |
+
type=str,
|
62 |
+
default=None,
|
63 |
+
required=True,
|
64 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
65 |
+
)
|
66 |
+
parser.add_argument(
|
67 |
+
"--tokenizer_name",
|
68 |
+
type=str,
|
69 |
+
default=None,
|
70 |
+
help="Pretrained tokenizer name or path if not the same as model_name",
|
71 |
+
)
|
72 |
+
parser.add_argument(
|
73 |
+
"--instance_data_dir",
|
74 |
+
type=str,
|
75 |
+
default=None,
|
76 |
+
required=True,
|
77 |
+
help="A folder containing the training data of instance images.",
|
78 |
+
)
|
79 |
+
parser.add_argument(
|
80 |
+
"--class_data_dir",
|
81 |
+
type=str,
|
82 |
+
default=None,
|
83 |
+
required=False,
|
84 |
+
help="A folder containing the training data of class images.",
|
85 |
+
)
|
86 |
+
parser.add_argument(
|
87 |
+
"--instance_prompt",
|
88 |
+
type=str,
|
89 |
+
default=None,
|
90 |
+
help="The prompt with identifier specifying the instance",
|
91 |
+
)
|
92 |
+
parser.add_argument(
|
93 |
+
"--class_prompt",
|
94 |
+
type=str,
|
95 |
+
default="",
|
96 |
+
help="The prompt to specify images in the same class as provided instance images.",
|
97 |
+
)
|
98 |
+
parser.add_argument(
|
99 |
+
"--with_prior_preservation",
|
100 |
+
default=False,
|
101 |
+
action="store_true",
|
102 |
+
help="Flag to add prior preservation loss.",
|
103 |
+
)
|
104 |
+
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
|
105 |
+
parser.add_argument(
|
106 |
+
"--num_class_images",
|
107 |
+
type=int,
|
108 |
+
default=100,
|
109 |
+
help=(
|
110 |
+
"Minimal class images for prior preservation loss. If not have enough images, additional images will be"
|
111 |
+
" sampled with class_prompt."
|
112 |
+
),
|
113 |
+
)
|
114 |
+
parser.add_argument(
|
115 |
+
"--output_dir",
|
116 |
+
type=str,
|
117 |
+
default="",
|
118 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
119 |
+
)
|
120 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
121 |
+
parser.add_argument(
|
122 |
+
"--resolution",
|
123 |
+
type=int,
|
124 |
+
default=512,
|
125 |
+
help=(
|
126 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
127 |
+
" resolution"
|
128 |
+
),
|
129 |
+
)
|
130 |
+
parser.add_argument(
|
131 |
+
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
|
132 |
+
)
|
133 |
+
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
|
134 |
+
parser.add_argument(
|
135 |
+
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
|
139 |
+
)
|
140 |
+
parser.add_argument("--num_train_epochs", type=int, default=1)
|
141 |
+
parser.add_argument(
|
142 |
+
"--max_train_steps",
|
143 |
+
type=int,
|
144 |
+
default=None,
|
145 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
146 |
+
)
|
147 |
+
parser.add_argument(
|
148 |
+
"--gradient_accumulation_steps",
|
149 |
+
type=int,
|
150 |
+
default=1,
|
151 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--gradient_checkpointing",
|
155 |
+
action="store_true",
|
156 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
157 |
+
)
|
158 |
+
parser.add_argument(
|
159 |
+
"--learning_rate",
|
160 |
+
type=float,
|
161 |
+
default=5e-6,
|
162 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
163 |
+
)
|
164 |
+
parser.add_argument(
|
165 |
+
"--scale_lr",
|
166 |
+
action="store_true",
|
167 |
+
default=False,
|
168 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
169 |
+
)
|
170 |
+
parser.add_argument(
|
171 |
+
"--lr_scheduler",
|
172 |
+
type=str,
|
173 |
+
default="constant",
|
174 |
+
help=(
|
175 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
176 |
+
' "constant", "constant_with_warmup"]'
|
177 |
+
),
|
178 |
+
)
|
179 |
+
parser.add_argument(
|
180 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
184 |
+
)
|
185 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
186 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
187 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
188 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
189 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
190 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
191 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
192 |
+
parser.add_argument(
|
193 |
+
"--hub_model_id",
|
194 |
+
type=str,
|
195 |
+
default=None,
|
196 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
197 |
+
)
|
198 |
+
parser.add_argument(
|
199 |
+
"--logging_dir",
|
200 |
+
type=str,
|
201 |
+
default="logs",
|
202 |
+
help=(
|
203 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
204 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
205 |
+
),
|
206 |
+
)
|
207 |
+
parser.add_argument(
|
208 |
+
"--mixed_precision",
|
209 |
+
type=str,
|
210 |
+
default="no",
|
211 |
+
choices=["no", "fp16", "bf16"],
|
212 |
+
help=(
|
213 |
+
"Whether to use mixed precision. Choose"
|
214 |
+
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
215 |
+
"and an Nvidia Ampere GPU."
|
216 |
+
),
|
217 |
+
)
|
218 |
+
|
219 |
+
parser.add_argument(
|
220 |
+
"--save_n_steps",
|
221 |
+
type=int,
|
222 |
+
default=1,
|
223 |
+
help=("Save the model every n global_steps"),
|
224 |
+
)
|
225 |
+
|
226 |
+
|
227 |
+
parser.add_argument(
|
228 |
+
"--save_starting_step",
|
229 |
+
type=int,
|
230 |
+
default=1,
|
231 |
+
help=("The step from which it starts saving intermediary checkpoints"),
|
232 |
+
)
|
233 |
+
|
234 |
+
parser.add_argument(
|
235 |
+
"--stop_text_encoder_training",
|
236 |
+
type=int,
|
237 |
+
default=1000000,
|
238 |
+
help=("The step at which the text_encoder is no longer trained"),
|
239 |
+
)
|
240 |
+
|
241 |
+
|
242 |
+
parser.add_argument(
|
243 |
+
"--image_captions_filename",
|
244 |
+
action="store_true",
|
245 |
+
help="Get captions from filename",
|
246 |
+
)
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
parser.add_argument(
|
251 |
+
"--Resumetr",
|
252 |
+
type=str,
|
253 |
+
default="False",
|
254 |
+
help="Resume training info",
|
255 |
+
)
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
parser.add_argument(
|
260 |
+
"--Session_dir",
|
261 |
+
type=str,
|
262 |
+
default="",
|
263 |
+
help="Current session directory",
|
264 |
+
)
|
265 |
+
|
266 |
+
parser.add_argument(
|
267 |
+
"--external_captions",
|
268 |
+
action="store_true",
|
269 |
+
default=False,
|
270 |
+
help="Use captions stored in a txt file",
|
271 |
+
)
|
272 |
+
|
273 |
+
parser.add_argument(
|
274 |
+
"--captions_dir",
|
275 |
+
type=str,
|
276 |
+
default="",
|
277 |
+
help="The folder where captions files are stored",
|
278 |
+
)
|
279 |
+
|
280 |
+
parser.add_argument(
|
281 |
+
"--offset_noise",
|
282 |
+
action="store_true",
|
283 |
+
default=False,
|
284 |
+
help="Offset Noise",
|
285 |
+
)
|
286 |
+
|
287 |
+
parser.add_argument(
|
288 |
+
"--ofstnselvl",
|
289 |
+
type=float,
|
290 |
+
default=0.03,
|
291 |
+
help="Offset Noise amount",
|
292 |
+
)
|
293 |
+
|
294 |
+
parser.add_argument(
|
295 |
+
"--resume",
|
296 |
+
action="store_true",
|
297 |
+
default=False,
|
298 |
+
help="resume training",
|
299 |
+
)
|
300 |
+
|
301 |
+
parser.add_argument(
|
302 |
+
"--dim",
|
303 |
+
type=int,
|
304 |
+
default=64,
|
305 |
+
help="LoRa dimension",
|
306 |
+
)
|
307 |
+
|
308 |
+
args = parser.parse_args()
|
309 |
+
|
310 |
+
return args
|
311 |
+
|
312 |
+
|
313 |
+
|
314 |
+
class DreamBoothDataset(Dataset):
|
315 |
+
"""
|
316 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
317 |
+
It pre-processes the images and the tokenizes prompts.
|
318 |
+
"""
|
319 |
+
|
320 |
+
def __init__(
|
321 |
+
self,
|
322 |
+
instance_data_root,
|
323 |
+
args,
|
324 |
+
tokenizers,
|
325 |
+
text_encoders,
|
326 |
+
size=512,
|
327 |
+
center_crop=False,
|
328 |
+
instance_prompt_hidden_states=None,
|
329 |
+
instance_unet_added_conditions=None,
|
330 |
+
):
|
331 |
+
self.size = size
|
332 |
+
self.tokenizers=tokenizers
|
333 |
+
self.text_encoders=text_encoders
|
334 |
+
self.center_crop = center_crop
|
335 |
+
self.instance_prompt_hidden_states = instance_prompt_hidden_states
|
336 |
+
self.instance_unet_added_conditions = instance_unet_added_conditions
|
337 |
+
self.image_captions_filename = None
|
338 |
+
|
339 |
+
self.instance_data_root = Path(instance_data_root)
|
340 |
+
if not self.instance_data_root.exists():
|
341 |
+
raise ValueError("Instance images root doesn't exists.")
|
342 |
+
|
343 |
+
self.instance_images_path = list(Path(instance_data_root).iterdir())
|
344 |
+
self.num_instance_images = len(self.instance_images_path)
|
345 |
+
self._length = self.num_instance_images
|
346 |
+
|
347 |
+
if args.image_captions_filename:
|
348 |
+
self.image_captions_filename = True
|
349 |
+
|
350 |
+
self.image_transforms = transforms.Compose(
|
351 |
+
[
|
352 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
353 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
354 |
+
transforms.ToTensor(),
|
355 |
+
transforms.Normalize([0.5], [0.5]),
|
356 |
+
]
|
357 |
+
)
|
358 |
+
|
359 |
+
def __len__(self):
|
360 |
+
return self._length
|
361 |
+
|
362 |
+
def __getitem__(self, index, args=parse_args()):
|
363 |
+
example = {}
|
364 |
+
path = self.instance_images_path[index % self.num_instance_images]
|
365 |
+
instance_image = Image.open(path)
|
366 |
+
if not instance_image.mode == "RGB":
|
367 |
+
instance_image = instance_image.convert("RGB")
|
368 |
+
|
369 |
+
if self.image_captions_filename:
|
370 |
+
filename = Path(path).stem
|
371 |
+
|
372 |
+
pt=''.join([i for i in filename if not i.isdigit()])
|
373 |
+
pt=pt.replace("_"," ")
|
374 |
+
pt=pt.replace("(","")
|
375 |
+
pt=pt.replace(")","")
|
376 |
+
pt=pt.replace("-","")
|
377 |
+
pt=pt.replace("conceptimagedb","")
|
378 |
+
|
379 |
+
if args.external_captions:
|
380 |
+
cptpth=os.path.join(args.captions_dir, filename+'.txt')
|
381 |
+
if os.path.exists(cptpth):
|
382 |
+
with open(cptpth, "r") as f:
|
383 |
+
instance_prompt=f.read()
|
384 |
+
else:
|
385 |
+
instance_prompt=pt
|
386 |
+
else:
|
387 |
+
instance_prompt = pt
|
388 |
+
|
389 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
390 |
+
with torch.no_grad():
|
391 |
+
example["instance_prompt_ids"], example["instance_added_cond_kwargs"]= compute_embeddings(args, instance_prompt, self.text_encoders, self.tokenizers)
|
392 |
+
|
393 |
+
return example
|
394 |
+
|
395 |
+
|
396 |
+
class PromptDataset(Dataset):
|
397 |
+
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
|
398 |
+
|
399 |
+
def __init__(self, prompt, num_samples):
|
400 |
+
self.prompt = prompt
|
401 |
+
self.num_samples = num_samples
|
402 |
+
|
403 |
+
def __len__(self):
|
404 |
+
return self.num_samples
|
405 |
+
|
406 |
+
def __getitem__(self, index):
|
407 |
+
example = {}
|
408 |
+
example["prompt"] = self.prompt
|
409 |
+
example["index"] = index
|
410 |
+
return example
|
411 |
+
|
412 |
+
|
413 |
+
def encode_prompt(text_encoders, tokenizers, prompt):
|
414 |
+
prompt_embeds_list = []
|
415 |
+
|
416 |
+
for tokenizer, text_encoder in zip(tokenizers, text_encoders):
|
417 |
+
text_inputs = tokenizer(
|
418 |
+
prompt,
|
419 |
+
padding="max_length",
|
420 |
+
max_length=tokenizer.model_max_length,
|
421 |
+
truncation=True,
|
422 |
+
return_tensors="pt",
|
423 |
+
)
|
424 |
+
text_input_ids = text_inputs.input_ids
|
425 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
426 |
+
|
427 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
428 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
|
429 |
+
logger.warning(
|
430 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
431 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
432 |
+
)
|
433 |
+
|
434 |
+
with torch.no_grad():
|
435 |
+
prompt_embeds = text_encoder(
|
436 |
+
text_input_ids.to(text_encoder.device),
|
437 |
+
output_hidden_states=True,
|
438 |
+
)
|
439 |
+
|
440 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
441 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
442 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
443 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
444 |
+
prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1)
|
445 |
+
prompt_embeds_list.append(prompt_embeds)
|
446 |
+
|
447 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
448 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1)
|
449 |
+
return prompt_embeds, pooled_prompt_embeds
|
450 |
+
|
451 |
+
|
452 |
+
def collate_fn(examples):
|
453 |
+
|
454 |
+
input_ids = [example["instance_prompt_ids"] for example in examples]
|
455 |
+
pixel_values = [example["instance_images"] for example in examples]
|
456 |
+
add_text_embeds = [example["instance_added_cond_kwargs"]["text_embeds"] for example in examples]
|
457 |
+
add_time_ids = [example["instance_added_cond_kwargs"]["time_ids"] for example in examples]
|
458 |
+
|
459 |
+
pixel_values = torch.stack(pixel_values)
|
460 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).half()
|
461 |
+
|
462 |
+
input_ids = torch.cat(input_ids, dim=0)
|
463 |
+
add_text_embeds = torch.cat(add_text_embeds, dim=0)
|
464 |
+
add_time_ids = torch.cat(add_time_ids, dim=0)
|
465 |
+
|
466 |
+
batch = {
|
467 |
+
"input_ids": input_ids,
|
468 |
+
"pixel_values": pixel_values,
|
469 |
+
"unet_added_conditions": {"text_embeds": add_text_embeds, "time_ids": add_time_ids},
|
470 |
+
}
|
471 |
+
|
472 |
+
return batch
|
473 |
+
|
474 |
+
|
475 |
+
def compute_embeddings(args, prompt, text_encoders, tokenizers):
|
476 |
+
original_size = (args.resolution, args.resolution)
|
477 |
+
target_size = (args.resolution, args.resolution)
|
478 |
+
crops_coords_top_left = (0, 0)
|
479 |
+
|
480 |
+
with torch.no_grad():
|
481 |
+
prompt_embeds, pooled_prompt_embeds = encode_prompt(text_encoders, tokenizers, prompt)
|
482 |
+
add_text_embeds = pooled_prompt_embeds
|
483 |
+
|
484 |
+
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
|
485 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
486 |
+
add_time_ids = torch.tensor([add_time_ids])
|
487 |
+
|
488 |
+
prompt_embeds = prompt_embeds.to('cuda')
|
489 |
+
add_text_embeds = add_text_embeds.to('cuda')
|
490 |
+
add_time_ids = add_time_ids.to('cuda', dtype=prompt_embeds.dtype)
|
491 |
+
unet_added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
492 |
+
|
493 |
+
return prompt_embeds, unet_added_cond_kwargs
|
494 |
+
|
495 |
+
|
496 |
+
class LatentsDataset(Dataset):
|
497 |
+
def __init__(self, latents_cache, text_encoder_cache, cond_cache):
|
498 |
+
self.latents_cache = latents_cache
|
499 |
+
self.text_encoder_cache = text_encoder_cache
|
500 |
+
self.cond_cache = cond_cache
|
501 |
+
|
502 |
+
def __len__(self):
|
503 |
+
return len(self.latents_cache)
|
504 |
+
|
505 |
+
def __getitem__(self, index):
|
506 |
+
return self.latents_cache[index], self.text_encoder_cache[index], self.cond_cache[index]
|
507 |
+
|
508 |
+
|
509 |
+
|
510 |
+
def main():
|
511 |
+
args = parse_args()
|
512 |
+
logging_dir = Path(args.output_dir, args.logging_dir)
|
513 |
+
|
514 |
+
accelerator = Accelerator(
|
515 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
516 |
+
mixed_precision=args.mixed_precision,
|
517 |
+
log_with="tensorboard",
|
518 |
+
logging_dir=logging_dir,
|
519 |
+
)
|
520 |
+
|
521 |
+
|
522 |
+
if args.seed is not None:
|
523 |
+
set_seed(args.seed)
|
524 |
+
|
525 |
+
# Handle the repository creation
|
526 |
+
if accelerator.is_main_process:
|
527 |
+
if args.output_dir is not None:
|
528 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
529 |
+
|
530 |
+
# Load the tokenizers
|
531 |
+
tokenizer_one = AutoTokenizer.from_pretrained(
|
532 |
+
args.pretrained_model_name_or_path,
|
533 |
+
subfolder="tokenizer",
|
534 |
+
use_fast=False,
|
535 |
+
use_auth_token=True,
|
536 |
+
)
|
537 |
+
tokenizer_two = AutoTokenizer.from_pretrained(
|
538 |
+
args.pretrained_model_name_or_path,
|
539 |
+
subfolder="tokenizer_2",
|
540 |
+
use_fast=False,
|
541 |
+
use_auth_token=True
|
542 |
+
)
|
543 |
+
|
544 |
+
|
545 |
+
|
546 |
+
# import correct text encoder classes
|
547 |
+
text_encoder_cls_one = import_model_class_from_model_name_or_path(
|
548 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder"
|
549 |
+
)
|
550 |
+
text_encoder_cls_two = import_model_class_from_model_name_or_path(
|
551 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder_2"
|
552 |
+
)
|
553 |
+
|
554 |
+
# Load scheduler and models
|
555 |
+
|
556 |
+
text_encoder_one = text_encoder_cls_one.from_pretrained(
|
557 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", use_auth_token=True,
|
558 |
+
)
|
559 |
+
text_encoder_two = text_encoder_cls_two.from_pretrained(
|
560 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder_2", use_auth_token=True
|
561 |
+
)
|
562 |
+
vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", use_auth_token=True)
|
563 |
+
unet = UNet2DConditionModel.from_pretrained(
|
564 |
+
args.pretrained_model_name_or_path, subfolder="unet", use_auth_token=True
|
565 |
+
)
|
566 |
+
|
567 |
+
vae.requires_grad_(False)
|
568 |
+
text_encoder_one.requires_grad_(False)
|
569 |
+
text_encoder_two.requires_grad_(False)
|
570 |
+
unet.requires_grad_(False)
|
571 |
+
text_encoder_one.eval()
|
572 |
+
text_encoder_two.eval()
|
573 |
+
vae.eval()
|
574 |
+
|
575 |
+
model_path = os.path.join(args.Session_dir, os.path.basename(args.Session_dir) + ".safetensors")
|
576 |
+
network = create_network(1, args.dim, 20000, unet)
|
577 |
+
if args.resume:
|
578 |
+
network.load_weights(model_path)
|
579 |
+
|
580 |
+
def set_diffusers_xformers_flag(model, valid):
|
581 |
+
def fn_recursive_set_mem_eff(module: torch.nn.Module):
|
582 |
+
if hasattr(module, "set_use_memory_efficient_attention_xformers"):
|
583 |
+
module.set_use_memory_efficient_attention_xformers(valid)
|
584 |
+
|
585 |
+
for child in module.children():
|
586 |
+
fn_recursive_set_mem_eff(child)
|
587 |
+
|
588 |
+
fn_recursive_set_mem_eff(model)
|
589 |
+
|
590 |
+
set_diffusers_xformers_flag(unet, True)
|
591 |
+
|
592 |
+
network.apply_to(unet, True)
|
593 |
+
trainable_params = network.parameters()
|
594 |
+
|
595 |
+
tokenizers = [tokenizer_one, tokenizer_two]
|
596 |
+
text_encoders = [text_encoder_one, text_encoder_two]
|
597 |
+
|
598 |
+
|
599 |
+
if args.gradient_checkpointing:
|
600 |
+
unet.enable_gradient_checkpointing()
|
601 |
+
|
602 |
+
if args.scale_lr:
|
603 |
+
args.learning_rate = (
|
604 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
605 |
+
)
|
606 |
+
|
607 |
+
optimizer_class = bnb.optim.AdamW8bit
|
608 |
+
|
609 |
+
optimizer = optimizer_class(
|
610 |
+
trainable_params,
|
611 |
+
lr=args.learning_rate,
|
612 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
613 |
+
weight_decay=args.adam_weight_decay,
|
614 |
+
eps=args.adam_epsilon,
|
615 |
+
)
|
616 |
+
|
617 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler", use_auth_token=True)
|
618 |
+
|
619 |
+
train_dataset = DreamBoothDataset(
|
620 |
+
instance_data_root=args.instance_data_dir,
|
621 |
+
tokenizers=tokenizers,
|
622 |
+
text_encoders=text_encoders,
|
623 |
+
size=args.resolution,
|
624 |
+
center_crop=args.center_crop,
|
625 |
+
args=args
|
626 |
+
)
|
627 |
+
|
628 |
+
train_dataloader = torch.utils.data.DataLoader(
|
629 |
+
train_dataset,
|
630 |
+
batch_size=args.train_batch_size,
|
631 |
+
shuffle=True,
|
632 |
+
collate_fn=lambda examples: collate_fn(examples),
|
633 |
+
)
|
634 |
+
|
635 |
+
|
636 |
+
# Scheduler and math around the number of training steps.
|
637 |
+
overrode_max_train_steps = False
|
638 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
639 |
+
if args.max_train_steps is None:
|
640 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
641 |
+
overrode_max_train_steps = True
|
642 |
+
|
643 |
+
lr_scheduler = get_scheduler(
|
644 |
+
args.lr_scheduler,
|
645 |
+
optimizer=optimizer,
|
646 |
+
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
|
647 |
+
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
|
648 |
+
)
|
649 |
+
|
650 |
+
|
651 |
+
network, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
652 |
+
network, optimizer, train_dataloader, lr_scheduler)
|
653 |
+
|
654 |
+
weight_dtype = torch.float32
|
655 |
+
if args.mixed_precision == "fp16":
|
656 |
+
weight_dtype = torch.float16
|
657 |
+
elif args.mixed_precision == "bf16":
|
658 |
+
weight_dtype = torch.bfloat16
|
659 |
+
|
660 |
+
unet.to(accelerator.device, dtype=weight_dtype)
|
661 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
662 |
+
network.prepare_grad_etc(network)
|
663 |
+
|
664 |
+
|
665 |
+
latents_cache = []
|
666 |
+
text_encoder_cache = []
|
667 |
+
cond_cache= []
|
668 |
+
for batch in train_dataloader:
|
669 |
+
with torch.no_grad():
|
670 |
+
|
671 |
+
batch["input_ids"] = batch["input_ids"].to(accelerator.device, non_blocking=True)
|
672 |
+
batch["unet_added_conditions"] = batch["unet_added_conditions"]
|
673 |
+
|
674 |
+
batch["pixel_values"]=(vae.encode(batch["pixel_values"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample() * vae.config.scaling_factor)
|
675 |
+
|
676 |
+
latents_cache.append(batch["pixel_values"])
|
677 |
+
text_encoder_cache.append(batch["input_ids"])
|
678 |
+
cond_cache.append(batch["unet_added_conditions"])
|
679 |
+
|
680 |
+
train_dataset = LatentsDataset(latents_cache, text_encoder_cache, cond_cache)
|
681 |
+
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, collate_fn=lambda x: x, shuffle=True)
|
682 |
+
|
683 |
+
del vae, tokenizers, text_encoders
|
684 |
+
gc.collect()
|
685 |
+
torch.cuda.empty_cache()
|
686 |
+
|
687 |
+
|
688 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
689 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
690 |
+
if overrode_max_train_steps:
|
691 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
692 |
+
# Afterwards we recalculate our number of training epochs
|
693 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
694 |
+
|
695 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
696 |
+
# The trackers initializes automatically on the main process.
|
697 |
+
if accelerator.is_main_process:
|
698 |
+
accelerator.init_trackers("dreambooth", config=vars(args))
|
699 |
+
|
700 |
+
def bar(prg):
|
701 |
+
br='|'+'█' * prg + ' ' * (25-prg)+'|'
|
702 |
+
return br
|
703 |
+
|
704 |
+
# Train!
|
705 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
706 |
+
text_enc_context = nullcontext() if args.train_text_encoder else torch.no_grad()
|
707 |
+
logger.info("***** Running training *****")
|
708 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
709 |
+
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
710 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
711 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
712 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
713 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
714 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
715 |
+
# Only show the progress bar once on each machine.
|
716 |
+
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
717 |
+
global_step = 0
|
718 |
+
|
719 |
+
for epoch in range(args.num_train_epochs):
|
720 |
+
unet.train()
|
721 |
+
network.train()
|
722 |
+
for step, batch in enumerate(train_dataloader):
|
723 |
+
with accelerator.accumulate(unet):
|
724 |
+
|
725 |
+
with torch.no_grad():
|
726 |
+
model_input = batch[0][0]
|
727 |
+
|
728 |
+
# Sample noise that we'll add to the latents
|
729 |
+
if args.offset_noise:
|
730 |
+
noise = torch.randn_like(model_input)# + args.ofstnselvl * torch.randn(model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device)
|
731 |
+
else:
|
732 |
+
noise = torch.randn_like(model_input)
|
733 |
+
|
734 |
+
bsz = model_input.shape[0]
|
735 |
+
|
736 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device)
|
737 |
+
timesteps = timesteps.long()
|
738 |
+
|
739 |
+
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
|
740 |
+
|
741 |
+
# Predict the noise residual
|
742 |
+
with accelerator.autocast():
|
743 |
+
model_pred = unet(noisy_model_input, timesteps, batch[0][1], added_cond_kwargs=batch[0][2]).sample
|
744 |
+
|
745 |
+
# Get the target for loss depending on the prediction type
|
746 |
+
target = noise
|
747 |
+
|
748 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
749 |
+
|
750 |
+
accelerator.backward(loss)
|
751 |
+
optimizer.step()
|
752 |
+
lr_scheduler.step()
|
753 |
+
optimizer.zero_grad(set_to_none=True)
|
754 |
+
|
755 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
756 |
+
if accelerator.sync_gradients:
|
757 |
+
progress_bar.update(1)
|
758 |
+
global_step += 1
|
759 |
+
|
760 |
+
fll=round((global_step*100)/args.max_train_steps)
|
761 |
+
fll=round(fll/4)
|
762 |
+
pr=bar(fll)
|
763 |
+
|
764 |
+
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
765 |
+
progress_bar.set_postfix(**logs)
|
766 |
+
progress_bar.set_description_str("Progress")
|
767 |
+
accelerator.log(logs, step=global_step)
|
768 |
+
|
769 |
+
if global_step >= args.max_train_steps:
|
770 |
+
break
|
771 |
+
|
772 |
+
|
773 |
+
accelerator.wait_for_everyone()
|
774 |
+
if accelerator.is_main_process:
|
775 |
+
network = accelerator.unwrap_model(network)
|
776 |
+
accelerator.end_training()
|
777 |
+
network.save_weights(model_path, torch.float16, None)
|
778 |
+
|
779 |
+
accelerator.end_training()
|
780 |
+
|
781 |
+
if __name__ == "__main__":
|
782 |
+
main()
|