joefarrington commited on
Commit
f57d035
1 Parent(s): 0347ddc

Initial commit, using SB3 PPO defaults and trained for 1M timesteps

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 272.58 +/- 19.42
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4a829fac20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4a829facb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4a829fad40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4a829fadd0>", "_build": "<function ActorCriticPolicy._build at 0x7f4a829fae60>", "forward": "<function ActorCriticPolicy.forward at 0x7f4a829faef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4a829faf80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4a82a02050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4a82a020e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4a82a02170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4a82a02200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4a82a40c60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651785264.5093782, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM05Kz69gX48uJdkvnzGUL5ToZW9RfR4vAAAAAAAAAAAzYvRPY8mILp3CYs2R4SBMWhUlLtkw6a1AAAAAAAAgD9TiDM+9OiDvO5NVrnhCXe7XwT2vRsn77sAAAAAAAAAADNktD24nsk4EqW7u8MzfjRpaxA70m8AtAAAgD8AAIA/mlVBvlJNpj8X+im/ba36vguJY77T0UW+AAAAAAAAAABm2Dq+1IyBvNsXEztNmD85y03nPWpnN7oAAIA/AACAP12MkT5e+dg+us6yu2VHv76dXuA9gnk1OgAAAAAAAAAAgC/dPQnihD+8yqE+pm8xv1nkHj4AsA8+AAAAAAAAAACmZdU94VCOusJR8TL+ZKuxHS+eOgIdmLMAAIA/AACAPzMFq70Fzei7ck3uPXt4zr3lGuW71lFyvgAAAAAAAIA/zYBVvsABjz/fbR2/e2wXvy9Uib5N5C2+AAAAAAAAAADNTFc66aYvPuZY373N/1G+j/I5vdRxEr0AAAAAAAAAAFpeN76swpI862phPS8w1ruQAyC+xUHaPAAAgD8AAIA/wFSFPTic27vCkAC+teWwvYn0cD2DZJY+AACAPwAAgD+apXg8lECaPnLeVD30oKy+r69ePMCU77sAAAAAAAAAAOavOb6DIn28KjI7vDlnk7r4DuE9zVhtOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYmngRzWqckCUhpRSlIwBbJRLu4wBdJRHQJUKzIyTINp1fZQoaAZoCWgPQwgs1QW8zCdyQJSGlFKUaBVNCgFoFkdAlQvY/JNj9XV9lChoBmgJaA9DCCf6fJRRrHBAlIaUUpRoFUvCaBZHQJUMDkT6BRR1fZQoaAZoCWgPQwgZWMfxQ9dxQJSGlFKUaBVL7mgWR0CVDDeJpFkQdX2UKGgGaAloD0MIBKvq5XcIcUCUhpRSlGgVS89oFkdAlQxluvUz9HV9lChoBmgJaA9DCBiw5CqWTXFAlIaUUpRoFU0EAWgWR0CVDMF5OafBdX2UKGgGaAloD0MISN3OvvKNYUCUhpRSlGgVTegDaBZHQJUNB6iTMaF1fZQoaAZoCWgPQwjf+UUJep9vQJSGlFKUaBVL22gWR0CVDSjtG/etdX2UKGgGaAloD0MILIGU2HWHcECUhpRSlGgVS8FoFkdAlQ1NBv73wnV9lChoBmgJaA9DCKD83TuqgnFAlIaUUpRoFUvbaBZHQJUNtivxH5J1fZQoaAZoCWgPQwjxuKgWUW9wQJSGlFKUaBVL22gWR0CVDbpMHryEdX2UKGgGaAloD0MISgwCKwf5bkCUhpRSlGgVS8hoFkdAlQ3TxkNF0HV9lChoBmgJaA9DCEtXsI14dXBAlIaUUpRoFUv6aBZHQJUOHT9bX6J1fZQoaAZoCWgPQwjlJ9U+XQ9xQJSGlFKUaBVL92gWR0CVDlK1og3cdX2UKGgGaAloD0MIol9bPz3VcECUhpRSlGgVS9doFkdAlQ/hArxy4nV9lChoBmgJaA9DCJIDdjV5/29AlIaUUpRoFUvFaBZHQJUQdRCQcPx1fZQoaAZoCWgPQwhJEK6AwtVzQJSGlFKUaBVLv2gWR0CVEM3++/QCdX2UKGgGaAloD0MIdcdim9Ttb0CUhpRSlGgVS8doFkdAlRDVG5MDfXV9lChoBmgJaA9DCDDzHfzEZ2VAlIaUUpRoFU3oA2gWR0CVEU+tKZlWdX2UKGgGaAloD0MIoP1IEZnrbUCUhpRSlGgVS71oFkdAlRFb4N7SiXV9lChoBmgJaA9DCMv0S8Rb7W9AlIaUUpRoFUu+aBZHQJURgLDye7N1fZQoaAZoCWgPQwjXM4RjlhtwQJSGlFKUaBVL0GgWR0CVEYn3+MqCdX2UKGgGaAloD0MIqG+Z0+WscUCUhpRSlGgVS7poFkdAlRHx0p3HJnV9lChoBmgJaA9DCO5cGOlFgnNAlIaUUpRoFUvlaBZHQJUS3i++M611fZQoaAZoCWgPQwg7wmnBy1hxQJSGlFKUaBVL6WgWR0CVExXjENvwdX2UKGgGaAloD0MIoOBiRQ1NckCUhpRSlGgVTRYBaBZHQJUTkjFAE+x1fZQoaAZoCWgPQwinPSXnRLhyQJSGlFKUaBVNCQFoFkdAlRRvaHsTnXV9lChoBmgJaA9DCM1zRL6LBXJAlIaUUpRoFUvYaBZHQJUU+LP2PDJ1fZQoaAZoCWgPQwjjxcIQOadwQJSGlFKUaBVLuWgWR0CVFRQVKwpwdX2UKGgGaAloD0MITYdOz/tlcECUhpRSlGgVS8toFkdAlRUvvjOs1nV9lChoBmgJaA9DCBFUjV5NNHJAlIaUUpRoFUu4aBZHQJUVj0PH1e11fZQoaAZoCWgPQwjxK9ZwEeBxQJSGlFKUaBVLt2gWR0CVFb02cawVdX2UKGgGaAloD0MIGqiMfx8xc0CUhpRSlGgVS7hoFkdAlRXN9hJAdHV9lChoBmgJaA9DCBe4PNZMWXJAlIaUUpRoFU0AAWgWR0CVFtDcM3IddX2UKGgGaAloD0MIVBuciH5+cECUhpRSlGgVS+JoFkdAlRdSwjdHlXV9lChoBmgJaA9DCB6LbVJRzW9AlIaUUpRoFUvDaBZHQJUXoAlv60p1fZQoaAZoCWgPQwgLJZNTO+txQJSGlFKUaBVL0GgWR0CVGC+VTrE+dX2UKGgGaAloD0MIbkxPWKJ2cUCUhpRSlGgVS8toFkdAlRiarJbMYHV9lChoBmgJaA9DCBh47j3clnBAlIaUUpRoFUvMaBZHQJUZiWBz3h51fZQoaAZoCWgPQwjG/UemA3tyQJSGlFKUaBVLxmgWR0CVGe2EkB0ZdX2UKGgGaAloD0MIsMqFyr9DcUCUhpRSlGgVS8toFkdAlRosdHUc43V9lChoBmgJaA9DCLlQ+dcyjXBAlIaUUpRoFUvHaBZHQJUaMFQl8gJ1fZQoaAZoCWgPQwiTN8DMdy1uQJSGlFKUaBVLuGgWR0CVGnMz/IbPdX2UKGgGaAloD0MIdmwE4jVtckCUhpRSlGgVS8loFkdAlRqgP/aQFXV9lChoBmgJaA9DCBYyVwbVznBAlIaUUpRoFUvEaBZHQJUasAlv60p1fZQoaAZoCWgPQwhSuB6F6xRxQJSGlFKUaBVLx2gWR0CVHKznA6+4dX2UKGgGaAloD0MInnsPl1zsckCUhpRSlGgVS+poFkdAlRzIQOFxn3V9lChoBmgJaA9DCET3rGs0vnFAlIaUUpRoFUvMaBZHQJUd1CKJl8R1fZQoaAZoCWgPQwh+Vpkp7chwQJSGlFKUaBVL42gWR0CVHgbZezD5dX2UKGgGaAloD0MIk1URbrLkcUCUhpRSlGgVS7BoFkdAlR4VI3BHkXV9lChoBmgJaA9DCEDbatYZE29AlIaUUpRoFUu7aBZHQJUeyU9pyp91fZQoaAZoCWgPQwiW0F0S55pwQJSGlFKUaBVLw2gWR0CVH0JFb3XadX2UKGgGaAloD0MIiGcJMkIvcECUhpRSlGgVS8doFkdAlR9oGt6ol3V9lChoBmgJaA9DCPFIvDzdWnFAlIaUUpRoFUu4aBZHQJUfeKfnOjZ1fZQoaAZoCWgPQwheMLjmjqdwQJSGlFKUaBVLxWgWR0CVH6Hy3CsPdX2UKGgGaAloD0MIg79fzNbOcECUhpRSlGgVS9JoFkdAlSA4Mz/IbXV9lChoBmgJaA9DCCEE5EuoEkJAlIaUUpRoFUtiaBZHQJUguuA7Ppp1fZQoaAZoCWgPQwhSDfs9sd1wQJSGlFKUaBVL2mgWR0CVIsYBNmDldX2UKGgGaAloD0MIhXmPMw0KcECUhpRSlGgVS69oFkdAlSLNR3u/lHV9lChoBmgJaA9DCMxdS8gHD29AlIaUUpRoFUu7aBZHQJUjdazNUwV1fZQoaAZoCWgPQwguHXOeMQFjQJSGlFKUaBVN6ANoFkdAlSO0vGp++nV9lChoBmgJaA9DCJYi+Uogb3FAlIaUUpRoFUu2aBZHQJUkGVAzHjp1fZQoaAZoCWgPQwg9RKM7CEVtQJSGlFKUaBVLtWgWR0CVJNPq9oN/dX2UKGgGaAloD0MIr15FRge+YECUhpRSlGgVTegDaBZHQJUlseMhouh1fZQoaAZoCWgPQwiH30237AxwQJSGlFKUaBVLzmgWR0CVJdncL0BfdX2UKGgGaAloD0MIQEtXsA3UcUCUhpRSlGgVS7JoFkdAlSYzx5LRKHV9lChoBmgJaA9DCDv+CwTBUXFAlIaUUpRoFUv0aBZHQJUmmAYpDu11fZQoaAZoCWgPQwhauKzCphVxQJSGlFKUaBVL1GgWR0CVJrMOf/WEdX2UKGgGaAloD0MIrTWU2osJc0CUhpRSlGgVTQMBaBZHQJUnLmr8zhx1fZQoaAZoCWgPQwi3uMZnsgRjQJSGlFKUaBVN6ANoFkdAlShXizcAR3V9lChoBmgJaA9DCLFTrBoEvnJAlIaUUpRoFUuxaBZHQJUo+g8KXv91fZQoaAZoCWgPQwiX4qqy7+tvQJSGlFKUaBVL3GgWR0CVKZKPGQ0XdX2UKGgGaAloD0MIEXNJ1XaEbkCUhpRSlGgVS8FoFkdAlSmnV9Wp63V9lChoBmgJaA9DCDum7spug3FAlIaUUpRoFUvvaBZHQJUqHwlSjxl1fZQoaAZoCWgPQwi6MNKL2itxQJSGlFKUaBVL2WgWR0CVKq5tWMjvdX2UKGgGaAloD0MI7DL8p1udcUCUhpRSlGgVS8VoFkdAlSrICEHt4XV9lChoBmgJaA9DCLLWUGqvuG5AlIaUUpRoFUvOaBZHQJUsCFoL5RF1fZQoaAZoCWgPQwjrcHSV7opxQJSGlFKUaBVLuGgWR0CVLB+VC5VfdX2UKGgGaAloD0MI2dDN/oAacUCUhpRSlGgVS7hoFkdAlSw18G9pRHV9lChoBmgJaA9DCJSkayafXnBAlIaUUpRoFUvOaBZHQJUsXppvgm91fZQoaAZoCWgPQwj+8smK4V1hQJSGlFKUaBVN6ANoFkdAlSxyqU/wAnV9lChoBmgJaA9DCHjTLTtEXXBAlIaUUpRoFUv3aBZHQJUs/uYx+KF1fZQoaAZoCWgPQwjlC1pIQOpxQJSGlFKUaBVL1mgWR0CVLWaLn9vTdX2UKGgGaAloD0MIVb38TtO3cUCUhpRSlGgVS8NoFkdAlS3efNA1N3V9lChoBmgJaA9DCJeQD3p2JXFAlIaUUpRoFUvWaBZHQJUvlBeHBUJ1fZQoaAZoCWgPQwjO/dXj/hhxQJSGlFKUaBVL+mgWR0CVL/CvHLiddX2UKGgGaAloD0MIdt7GZgcQcECUhpRSlGgVS8loFkdAlTBJksjFAHV9lChoBmgJaA9DCC+lLhlHbXBAlIaUUpRoFUvXaBZHQJUwzawljVh1fZQoaAZoCWgPQwjFH0WduYNtQJSGlFKUaBVNBgFoFkdAlTDsbiqABnV9lChoBmgJaA9DCAKbc/DMjnNAlIaUUpRoFUv2aBZHQJUxBt1p0wJ1fZQoaAZoCWgPQwg3xeOiWpFyQJSGlFKUaBVLv2gWR0CVMWHRTjvNdX2UKGgGaAloD0MIPQytTs4bb0CUhpRSlGgVS89oFkdAlTG2NFSbY3V9lChoBmgJaA9DCFMFo5K6O3BAlIaUUpRoFUu4aBZHQJUx9ahYeT51fZQoaAZoCWgPQwiKdhVSPsRwQJSGlFKUaBVL32gWR0CVMm3vQWvbdX2UKGgGaAloD0MIIQN5dvn+cUCUhpRSlGgVS+loFkdAlTKchgVoH3V9lChoBmgJaA9DCHbexmZH7WBAlIaUUpRoFU3oA2gWR0CVM0EdNnGsdX2UKGgGaAloD0MI4jsx64VWcECUhpRSlGgVS95oFkdAlTNjJ2dNFnV9lChoBmgJaA9DCM3oR8PpKXFAlIaUUpRoFUu4aBZHQJU1HU9ZA6d1fZQoaAZoCWgPQwg10eejDIVwQJSGlFKUaBVLqGgWR0CVNSULDye7dX2UKGgGaAloD0MIca5hhoYFcUCUhpRSlGgVS9RoFkdAlTU6zRhMJ3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77453745f7123ef969a89b820de74f328ef7f0246b552584487d188b72c8fb59
3
+ size 209625
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.5786489837873, "std_reward": 19.415906403506657, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T21:39:57.380871"}
sb3-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:399f9f2ca1191dfadd7d64fac922b4cfaba40c1b5bd1734e536fef2dc188f3d6
3
+ size 144001
sb3-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
sb3-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4a829fac20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4a829facb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4a829fad40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4a829fadd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4a829fae60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4a829faef0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4a829faf80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4a82a02050>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4a82a020e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4a82a02170>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4a82a02200>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4a82a40c60>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651785264.5093782,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM05Kz69gX48uJdkvnzGUL5ToZW9RfR4vAAAAAAAAAAAzYvRPY8mILp3CYs2R4SBMWhUlLtkw6a1AAAAAAAAgD9TiDM+9OiDvO5NVrnhCXe7XwT2vRsn77sAAAAAAAAAADNktD24nsk4EqW7u8MzfjRpaxA70m8AtAAAgD8AAIA/mlVBvlJNpj8X+im/ba36vguJY77T0UW+AAAAAAAAAABm2Dq+1IyBvNsXEztNmD85y03nPWpnN7oAAIA/AACAP12MkT5e+dg+us6yu2VHv76dXuA9gnk1OgAAAAAAAAAAgC/dPQnihD+8yqE+pm8xv1nkHj4AsA8+AAAAAAAAAACmZdU94VCOusJR8TL+ZKuxHS+eOgIdmLMAAIA/AACAPzMFq70Fzei7ck3uPXt4zr3lGuW71lFyvgAAAAAAAIA/zYBVvsABjz/fbR2/e2wXvy9Uib5N5C2+AAAAAAAAAADNTFc66aYvPuZY373N/1G+j/I5vdRxEr0AAAAAAAAAAFpeN76swpI862phPS8w1ruQAyC+xUHaPAAAgD8AAIA/wFSFPTic27vCkAC+teWwvYn0cD2DZJY+AACAPwAAgD+apXg8lECaPnLeVD30oKy+r69ePMCU77sAAAAAAAAAAOavOb6DIn28KjI7vDlnk7r4DuE9zVhtOwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYmngRzWqckCUhpRSlIwBbJRLu4wBdJRHQJUKzIyTINp1fZQoaAZoCWgPQwgs1QW8zCdyQJSGlFKUaBVNCgFoFkdAlQvY/JNj9XV9lChoBmgJaA9DCCf6fJRRrHBAlIaUUpRoFUvCaBZHQJUMDkT6BRR1fZQoaAZoCWgPQwgZWMfxQ9dxQJSGlFKUaBVL7mgWR0CVDDeJpFkQdX2UKGgGaAloD0MIBKvq5XcIcUCUhpRSlGgVS89oFkdAlQxluvUz9HV9lChoBmgJaA9DCBiw5CqWTXFAlIaUUpRoFU0EAWgWR0CVDMF5OafBdX2UKGgGaAloD0MISN3OvvKNYUCUhpRSlGgVTegDaBZHQJUNB6iTMaF1fZQoaAZoCWgPQwjf+UUJep9vQJSGlFKUaBVL22gWR0CVDSjtG/etdX2UKGgGaAloD0MILIGU2HWHcECUhpRSlGgVS8FoFkdAlQ1NBv73wnV9lChoBmgJaA9DCKD83TuqgnFAlIaUUpRoFUvbaBZHQJUNtivxH5J1fZQoaAZoCWgPQwjxuKgWUW9wQJSGlFKUaBVL22gWR0CVDbpMHryEdX2UKGgGaAloD0MISgwCKwf5bkCUhpRSlGgVS8hoFkdAlQ3TxkNF0HV9lChoBmgJaA9DCEtXsI14dXBAlIaUUpRoFUv6aBZHQJUOHT9bX6J1fZQoaAZoCWgPQwjlJ9U+XQ9xQJSGlFKUaBVL92gWR0CVDlK1og3cdX2UKGgGaAloD0MIol9bPz3VcECUhpRSlGgVS9doFkdAlQ/hArxy4nV9lChoBmgJaA9DCJIDdjV5/29AlIaUUpRoFUvFaBZHQJUQdRCQcPx1fZQoaAZoCWgPQwhJEK6AwtVzQJSGlFKUaBVLv2gWR0CVEM3++/QCdX2UKGgGaAloD0MIdcdim9Ttb0CUhpRSlGgVS8doFkdAlRDVG5MDfXV9lChoBmgJaA9DCDDzHfzEZ2VAlIaUUpRoFU3oA2gWR0CVEU+tKZlWdX2UKGgGaAloD0MIoP1IEZnrbUCUhpRSlGgVS71oFkdAlRFb4N7SiXV9lChoBmgJaA9DCMv0S8Rb7W9AlIaUUpRoFUu+aBZHQJURgLDye7N1fZQoaAZoCWgPQwjXM4RjlhtwQJSGlFKUaBVL0GgWR0CVEYn3+MqCdX2UKGgGaAloD0MIqG+Z0+WscUCUhpRSlGgVS7poFkdAlRHx0p3HJnV9lChoBmgJaA9DCO5cGOlFgnNAlIaUUpRoFUvlaBZHQJUS3i++M611fZQoaAZoCWgPQwg7wmnBy1hxQJSGlFKUaBVL6WgWR0CVExXjENvwdX2UKGgGaAloD0MIoOBiRQ1NckCUhpRSlGgVTRYBaBZHQJUTkjFAE+x1fZQoaAZoCWgPQwinPSXnRLhyQJSGlFKUaBVNCQFoFkdAlRRvaHsTnXV9lChoBmgJaA9DCM1zRL6LBXJAlIaUUpRoFUvYaBZHQJUU+LP2PDJ1fZQoaAZoCWgPQwjjxcIQOadwQJSGlFKUaBVLuWgWR0CVFRQVKwpwdX2UKGgGaAloD0MITYdOz/tlcECUhpRSlGgVS8toFkdAlRUvvjOs1nV9lChoBmgJaA9DCBFUjV5NNHJAlIaUUpRoFUu4aBZHQJUVj0PH1e11fZQoaAZoCWgPQwjxK9ZwEeBxQJSGlFKUaBVLt2gWR0CVFb02cawVdX2UKGgGaAloD0MIGqiMfx8xc0CUhpRSlGgVS7hoFkdAlRXN9hJAdHV9lChoBmgJaA9DCBe4PNZMWXJAlIaUUpRoFU0AAWgWR0CVFtDcM3IddX2UKGgGaAloD0MIVBuciH5+cECUhpRSlGgVS+JoFkdAlRdSwjdHlXV9lChoBmgJaA9DCB6LbVJRzW9AlIaUUpRoFUvDaBZHQJUXoAlv60p1fZQoaAZoCWgPQwgLJZNTO+txQJSGlFKUaBVL0GgWR0CVGC+VTrE+dX2UKGgGaAloD0MIbkxPWKJ2cUCUhpRSlGgVS8toFkdAlRiarJbMYHV9lChoBmgJaA9DCBh47j3clnBAlIaUUpRoFUvMaBZHQJUZiWBz3h51fZQoaAZoCWgPQwjG/UemA3tyQJSGlFKUaBVLxmgWR0CVGe2EkB0ZdX2UKGgGaAloD0MIsMqFyr9DcUCUhpRSlGgVS8toFkdAlRosdHUc43V9lChoBmgJaA9DCLlQ+dcyjXBAlIaUUpRoFUvHaBZHQJUaMFQl8gJ1fZQoaAZoCWgPQwiTN8DMdy1uQJSGlFKUaBVLuGgWR0CVGnMz/IbPdX2UKGgGaAloD0MIdmwE4jVtckCUhpRSlGgVS8loFkdAlRqgP/aQFXV9lChoBmgJaA9DCBYyVwbVznBAlIaUUpRoFUvEaBZHQJUasAlv60p1fZQoaAZoCWgPQwhSuB6F6xRxQJSGlFKUaBVLx2gWR0CVHKznA6+4dX2UKGgGaAloD0MInnsPl1zsckCUhpRSlGgVS+poFkdAlRzIQOFxn3V9lChoBmgJaA9DCET3rGs0vnFAlIaUUpRoFUvMaBZHQJUd1CKJl8R1fZQoaAZoCWgPQwh+Vpkp7chwQJSGlFKUaBVL42gWR0CVHgbZezD5dX2UKGgGaAloD0MIk1URbrLkcUCUhpRSlGgVS7BoFkdAlR4VI3BHkXV9lChoBmgJaA9DCEDbatYZE29AlIaUUpRoFUu7aBZHQJUeyU9pyp91fZQoaAZoCWgPQwiW0F0S55pwQJSGlFKUaBVLw2gWR0CVH0JFb3XadX2UKGgGaAloD0MIiGcJMkIvcECUhpRSlGgVS8doFkdAlR9oGt6ol3V9lChoBmgJaA9DCPFIvDzdWnFAlIaUUpRoFUu4aBZHQJUfeKfnOjZ1fZQoaAZoCWgPQwheMLjmjqdwQJSGlFKUaBVLxWgWR0CVH6Hy3CsPdX2UKGgGaAloD0MIg79fzNbOcECUhpRSlGgVS9JoFkdAlSA4Mz/IbXV9lChoBmgJaA9DCCEE5EuoEkJAlIaUUpRoFUtiaBZHQJUguuA7Ppp1fZQoaAZoCWgPQwhSDfs9sd1wQJSGlFKUaBVL2mgWR0CVIsYBNmDldX2UKGgGaAloD0MIhXmPMw0KcECUhpRSlGgVS69oFkdAlSLNR3u/lHV9lChoBmgJaA9DCMxdS8gHD29AlIaUUpRoFUu7aBZHQJUjdazNUwV1fZQoaAZoCWgPQwguHXOeMQFjQJSGlFKUaBVN6ANoFkdAlSO0vGp++nV9lChoBmgJaA9DCJYi+Uogb3FAlIaUUpRoFUu2aBZHQJUkGVAzHjp1fZQoaAZoCWgPQwg9RKM7CEVtQJSGlFKUaBVLtWgWR0CVJNPq9oN/dX2UKGgGaAloD0MIr15FRge+YECUhpRSlGgVTegDaBZHQJUlseMhouh1fZQoaAZoCWgPQwiH30237AxwQJSGlFKUaBVLzmgWR0CVJdncL0BfdX2UKGgGaAloD0MIQEtXsA3UcUCUhpRSlGgVS7JoFkdAlSYzx5LRKHV9lChoBmgJaA9DCDv+CwTBUXFAlIaUUpRoFUv0aBZHQJUmmAYpDu11fZQoaAZoCWgPQwhauKzCphVxQJSGlFKUaBVL1GgWR0CVJrMOf/WEdX2UKGgGaAloD0MIrTWU2osJc0CUhpRSlGgVTQMBaBZHQJUnLmr8zhx1fZQoaAZoCWgPQwi3uMZnsgRjQJSGlFKUaBVN6ANoFkdAlShXizcAR3V9lChoBmgJaA9DCLFTrBoEvnJAlIaUUpRoFUuxaBZHQJUo+g8KXv91fZQoaAZoCWgPQwiX4qqy7+tvQJSGlFKUaBVL3GgWR0CVKZKPGQ0XdX2UKGgGaAloD0MIEXNJ1XaEbkCUhpRSlGgVS8FoFkdAlSmnV9Wp63V9lChoBmgJaA9DCDum7spug3FAlIaUUpRoFUvvaBZHQJUqHwlSjxl1fZQoaAZoCWgPQwi6MNKL2itxQJSGlFKUaBVL2WgWR0CVKq5tWMjvdX2UKGgGaAloD0MI7DL8p1udcUCUhpRSlGgVS8VoFkdAlSrICEHt4XV9lChoBmgJaA9DCLLWUGqvuG5AlIaUUpRoFUvOaBZHQJUsCFoL5RF1fZQoaAZoCWgPQwjrcHSV7opxQJSGlFKUaBVLuGgWR0CVLB+VC5VfdX2UKGgGaAloD0MI2dDN/oAacUCUhpRSlGgVS7hoFkdAlSw18G9pRHV9lChoBmgJaA9DCJSkayafXnBAlIaUUpRoFUvOaBZHQJUsXppvgm91fZQoaAZoCWgPQwj+8smK4V1hQJSGlFKUaBVN6ANoFkdAlSxyqU/wAnV9lChoBmgJaA9DCHjTLTtEXXBAlIaUUpRoFUv3aBZHQJUs/uYx+KF1fZQoaAZoCWgPQwjlC1pIQOpxQJSGlFKUaBVL1mgWR0CVLWaLn9vTdX2UKGgGaAloD0MIVb38TtO3cUCUhpRSlGgVS8NoFkdAlS3efNA1N3V9lChoBmgJaA9DCJeQD3p2JXFAlIaUUpRoFUvWaBZHQJUvlBeHBUJ1fZQoaAZoCWgPQwjO/dXj/hhxQJSGlFKUaBVL+mgWR0CVL/CvHLiddX2UKGgGaAloD0MIdt7GZgcQcECUhpRSlGgVS8loFkdAlTBJksjFAHV9lChoBmgJaA9DCC+lLhlHbXBAlIaUUpRoFUvXaBZHQJUwzawljVh1fZQoaAZoCWgPQwjFH0WduYNtQJSGlFKUaBVNBgFoFkdAlTDsbiqABnV9lChoBmgJaA9DCAKbc/DMjnNAlIaUUpRoFUv2aBZHQJUxBt1p0wJ1fZQoaAZoCWgPQwg3xeOiWpFyQJSGlFKUaBVLv2gWR0CVMWHRTjvNdX2UKGgGaAloD0MIPQytTs4bb0CUhpRSlGgVS89oFkdAlTG2NFSbY3V9lChoBmgJaA9DCFMFo5K6O3BAlIaUUpRoFUu4aBZHQJUx9ahYeT51fZQoaAZoCWgPQwiKdhVSPsRwQJSGlFKUaBVL32gWR0CVMm3vQWvbdX2UKGgGaAloD0MIIQN5dvn+cUCUhpRSlGgVS+loFkdAlTKchgVoH3V9lChoBmgJaA9DCHbexmZH7WBAlIaUUpRoFU3oA2gWR0CVM0EdNnGsdX2UKGgGaAloD0MI4jsx64VWcECUhpRSlGgVS95oFkdAlTNjJ2dNFnV9lChoBmgJaA9DCM3oR8PpKXFAlIaUUpRoFUu4aBZHQJU1HU9ZA6d1fZQoaAZoCWgPQwg10eejDIVwQJSGlFKUaBVLqGgWR0CVNSULDye7dX2UKGgGaAloD0MIca5hhoYFcUCUhpRSlGgVS9RoFkdAlTU6zRhMJ3VlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
sb3-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8565a57177645d9bcdb59fd8b33415d71d5b27d607b0318673270b7ba26318ae
3
+ size 84893
sb3-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9efa0d4f9e53b497ea1e96bc7a05cf30258fdd10f5933b7f436d47416a4514d7
3
+ size 43201
sb3-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
sb3-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0