File size: 1,869 Bytes
00c9280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685c54a
 
00c9280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685c54a
00c9280
 
 
 
 
 
 
 
 
 
685c54a
 
 
 
00c9280
 
 
 
 
 
 
5e59b69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w_small
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w_small

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7832
- Wer: 82.6298

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.9114        | 0.4548 | 1000 | 0.8773          | 80.5271 |
| 0.8239        | 0.9095 | 2000 | 0.8073          | 72.1577 |
| 0.6064        | 1.3643 | 3000 | 0.7840          | 74.4663 |
| 0.6283        | 1.8190 | 4000 | 0.7717          | 78.3562 |
| 0.5439        | 2.2738 | 5000 | 0.7827          | 78.6556 |
| 0.5574        | 2.7285 | 6000 | 0.7720          | 71.1815 |
| 0.454         | 3.1833 | 7000 | 0.7840          | 89.8216 |
| 0.4246        | 3.6380 | 8000 | 0.7832          | 82.6298 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu118
- Datasets 3.0.0
- Tokenizers 0.19.1