system HF staff commited on
Commit
196fa34
1 Parent(s): b10e5ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DeCLUTR-base
2
+
3
+ ## Model description
4
+
5
+ The "DeCLUTR-base" model from our paper: [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659).
6
+
7
+ ## Intended uses & limitations
8
+
9
+ The model is intended to be used as a universal sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers).
10
+
11
+ #### How to use
12
+
13
+ ```python
14
+ import torch
15
+ from scipy.spatial.distance import cosine
16
+
17
+ from transformers import AutoModel, AutoTokenizer
18
+
19
+ # Load the model
20
+ tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-base")
21
+ model = AutoModel.from_pretrained("johngiorgi/declutr-base")
22
+
23
+ # Prepare some text to embed
24
+ text = [
25
+ "A smiling costumed woman is holding an umbrella.",
26
+ "A happy woman in a fairy costume holds an umbrella.",
27
+ ]
28
+ inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
29
+
30
+ # Embed the text
31
+ with torch.no_grad():
32
+ sequence_output, _ = model(**inputs, output_hidden_states=False)
33
+
34
+ # Mean pool the token-level embeddings to get sentence-level embeddings
35
+ embeddings = torch.sum(
36
+ sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1
37
+ ) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9)
38
+
39
+ # Compute a semantic similarity via the cosine distance
40
+ semantic_sim = 1 - cosine(embeddings[0], embeddings[1])
41
+ ```
42
+
43
+ ### BibTeX entry and citation info
44
+
45
+ ```bibtex
46
+ @article{Giorgi2020DeCLUTRDC,
47
+ title={DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations},
48
+ author={John M Giorgi and Osvald Nitski and Gary D. Bader and Bo Wang},
49
+ journal={ArXiv},
50
+ year={2020},
51
+ volume={abs/2006.03659}
52
+ }
53
+ ```