Update README.md
Browse files
README.md
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DeCLUTR-base
|
2 |
+
|
3 |
+
## Model description
|
4 |
+
|
5 |
+
The "DeCLUTR-base" model from our paper: [DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations](https://arxiv.org/abs/2006.03659).
|
6 |
+
|
7 |
+
## Intended uses & limitations
|
8 |
+
|
9 |
+
The model is intended to be used as a universal sentence encoder, similar to [Google's Universal Sentence Encoder](https://tfhub.dev/google/universal-sentence-encoder/4) or [Sentence Transformers](https://github.com/UKPLab/sentence-transformers).
|
10 |
+
|
11 |
+
#### How to use
|
12 |
+
|
13 |
+
```python
|
14 |
+
import torch
|
15 |
+
from scipy.spatial.distance import cosine
|
16 |
+
|
17 |
+
from transformers import AutoModel, AutoTokenizer
|
18 |
+
|
19 |
+
# Load the model
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained("johngiorgi/declutr-base")
|
21 |
+
model = AutoModel.from_pretrained("johngiorgi/declutr-base")
|
22 |
+
|
23 |
+
# Prepare some text to embed
|
24 |
+
text = [
|
25 |
+
"A smiling costumed woman is holding an umbrella.",
|
26 |
+
"A happy woman in a fairy costume holds an umbrella.",
|
27 |
+
]
|
28 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
29 |
+
|
30 |
+
# Embed the text
|
31 |
+
with torch.no_grad():
|
32 |
+
sequence_output, _ = model(**inputs, output_hidden_states=False)
|
33 |
+
|
34 |
+
# Mean pool the token-level embeddings to get sentence-level embeddings
|
35 |
+
embeddings = torch.sum(
|
36 |
+
sequence_output * inputs["attention_mask"].unsqueeze(-1), dim=1
|
37 |
+
) / torch.clamp(torch.sum(inputs["attention_mask"], dim=1, keepdims=True), min=1e-9)
|
38 |
+
|
39 |
+
# Compute a semantic similarity via the cosine distance
|
40 |
+
semantic_sim = 1 - cosine(embeddings[0], embeddings[1])
|
41 |
+
```
|
42 |
+
|
43 |
+
### BibTeX entry and citation info
|
44 |
+
|
45 |
+
```bibtex
|
46 |
+
@article{Giorgi2020DeCLUTRDC,
|
47 |
+
title={DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations},
|
48 |
+
author={John M Giorgi and Osvald Nitski and Gary D. Bader and Bo Wang},
|
49 |
+
journal={ArXiv},
|
50 |
+
year={2020},
|
51 |
+
volume={abs/2006.03659}
|
52 |
+
}
|
53 |
+
```
|