johnowhitaker
commited on
Commit
•
c89c483
1
Parent(s):
2d16aef
Update README.md
Browse files
README.md
CHANGED
@@ -18,3 +18,74 @@ The following `bitsandbytes` quantization config was used during training:
|
|
18 |
|
19 |
|
20 |
- PEFT 0.4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
- PEFT 0.4.0
|
21 |
+
|
22 |
+
|
23 |
+
notebook (training and inference): https://colab.research.google.com/drive/1GxbUYZiLidteVX4qu5iSox6oxxEOHk5O?usp=sharing
|
24 |
+
|
25 |
+
|
26 |
+
Usage:
|
27 |
+
```python
|
28 |
+
import requests
|
29 |
+
|
30 |
+
# Get a random Wikipedia article summary using their API
|
31 |
+
def random_extract():
|
32 |
+
URL = "https://en.wikipedia.org/api/rest_v1/page/random/summary"
|
33 |
+
PARAMS = {}
|
34 |
+
r = requests.get(url = URL, params = PARAMS)
|
35 |
+
data = r.json()
|
36 |
+
return data['extract']
|
37 |
+
|
38 |
+
# Format this as a prompt that would hopefully result in the model completing with a question
|
39 |
+
def random_prompt():
|
40 |
+
e = random_extract()
|
41 |
+
return f"""### CONTEXT: {e} ### QUESTION:"""
|
42 |
+
|
43 |
+
import torch
|
44 |
+
from peft import AutoPeftModelForCausalLM
|
45 |
+
from transformers import AutoTokenizer
|
46 |
+
|
47 |
+
output_dir = "mcqgen_test"
|
48 |
+
|
49 |
+
# load base LLM model and tokenizer
|
50 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
51 |
+
output_dir,
|
52 |
+
low_cpu_mem_usage=True,
|
53 |
+
torch_dtype=torch.float16,
|
54 |
+
load_in_4bit=True,
|
55 |
+
)
|
56 |
+
tokenizer = AutoTokenizer.from_pretrained(output_dir)
|
57 |
+
|
58 |
+
# We can feed in a random context prompt and see what question the model comes up with:
|
59 |
+
prompt = random_prompt()
|
60 |
+
|
61 |
+
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda()
|
62 |
+
# with torch.inference_mode():
|
63 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.9)
|
64 |
+
|
65 |
+
print(f"Prompt:\n{prompt}\n")
|
66 |
+
print(f"Generated MCQ:\n### QUESTION:{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}")
|
67 |
+
|
68 |
+
def process_outputs(outputs):
|
69 |
+
s = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]
|
70 |
+
split = s.split("### ")[1:][:7]
|
71 |
+
if len(split) != 7:
|
72 |
+
return None
|
73 |
+
# Check the starts
|
74 |
+
expected_starts = ['CONTEXT', 'QUESTION', 'A' , 'B', 'C', 'D', 'CORRECT']
|
75 |
+
for i, s in enumerate(split):
|
76 |
+
if not split[i].startswith(expected_starts[i]):
|
77 |
+
return None
|
78 |
+
return {
|
79 |
+
"context": split[0].replace("CONTEXT: ", ""),
|
80 |
+
"question": split[1].replace("QUESTION: ", ""),
|
81 |
+
"a": split[2].replace("A: ", ""),
|
82 |
+
"b": split[3].replace("B: ", ""),
|
83 |
+
"c": split[4].replace("C: ", ""),
|
84 |
+
"d": split[5].replace("D: ", ""),
|
85 |
+
"correct": split[6].replace("CORRECT: ", "")
|
86 |
+
}
|
87 |
+
|
88 |
+
|
89 |
+
process_outputs(outputs) # A nice dictionary hopefully
|
90 |
+
|
91 |
+
```
|