johnpaulbin commited on
Commit
cf1fd39
·
verified ·
1 Parent(s): ce9fa40

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +135 -0
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - loss:CoSENTLoss
8
+ base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
9
+ widget:
10
+ - source_sentence: I'm important.
11
+ sentences:
12
+ - I'm big.
13
+ - kili li tawa anpa poka kasi.
14
+ - mi suli.
15
+ - source_sentence: mi suli.
16
+ sentences:
17
+ - I'm fat.
18
+ - I'm big.
19
+ - kili li tawa anpa poka kasi.
20
+ - source_sentence: I am tall.
21
+ sentences:
22
+ - I'm fat.
23
+ - mi suli.
24
+ - The apple does not fall far from the tree.
25
+ - source_sentence: I am tall.
26
+ sentences:
27
+ - I'm important.
28
+ - kili li tawa anpa poka kasi.
29
+ - mi suli.
30
+ - source_sentence: mi suli.
31
+ sentences:
32
+ - The apple does not fall far from the tree.
33
+ - The apple does not fall far from the tree.
34
+ - mi suli.
35
+ pipeline_tag: sentence-similarity
36
+ library_name: sentence-transformers
37
+ ---
38
+
39
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
40
+
41
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
42
+
43
+ ## Model Details
44
+
45
+ ### Model Description
46
+ - **Model Type:** Sentence Transformer
47
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
48
+ - **Maximum Sequence Length:** 128 tokens
49
+ - **Output Dimensionality:** 384 tokens
50
+ - **Similarity Function:** Cosine Similarity
51
+ <!-- - **Training Dataset:** Unknown -->
52
+ <!-- - **Language:** Unknown -->
53
+ <!-- - **License:** Unknown -->
54
+
55
+ ### Model Sources
56
+
57
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
58
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
59
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
60
+
61
+ ### Full Model Architecture
62
+
63
+ ```
64
+ SentenceTransformer(
65
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
66
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
67
+ )
68
+ ```
69
+
70
+ ## Usage
71
+
72
+ ### Direct Usage (Sentence Transformers)
73
+
74
+ First install the Sentence Transformers library:
75
+
76
+ ```bash
77
+ pip install -U sentence-transformers
78
+ ```
79
+
80
+ Then you can load this model and run inference.
81
+ ```python
82
+ from sentence_transformers import SentenceTransformer
83
+
84
+ # Download from the 🤗 Hub
85
+ model = SentenceTransformer("sentence_transformers_model_id")
86
+ # Run inference
87
+ sentences = [
88
+ 'mi suli.',
89
+ 'The apple does not fall far from the tree.',
90
+ 'The apple does not fall far from the tree.',
91
+ ]
92
+ embeddings = model.encode(sentences)
93
+ print(embeddings.shape)
94
+ # [3, 384]
95
+
96
+ # Get the similarity scores for the embeddings
97
+ similarities = model.similarity(embeddings, embeddings)
98
+ print(similarities.shape)
99
+ # [3, 3]
100
+ ```
101
+
102
+ ## Training Details
103
+
104
+ ### Framework Versions
105
+ - Python: 3.10.12
106
+ - Sentence Transformers: 3.2.1
107
+ - Transformers: 4.42.2
108
+ - PyTorch: 2.5.1+cu121
109
+ - Accelerate: 1.1.1
110
+ - Datasets: 3.1.0
111
+ - Tokenizers: 0.19.1
112
+
113
+ #### Sentence Transformers
114
+ ```bibtex
115
+ @inproceedings{reimers-2019-sentence-bert,
116
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
117
+ author = "Reimers, Nils and Gurevych, Iryna",
118
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
119
+ month = "11",
120
+ year = "2019",
121
+ publisher = "Association for Computational Linguistics",
122
+ url = "https://arxiv.org/abs/1908.10084",
123
+ }
124
+ ```
125
+
126
+ #### CoSENTLoss
127
+ ```bibtex
128
+ @online{kexuefm-8847,
129
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
130
+ author={Su Jianlin},
131
+ year={2022},
132
+ month={Jan},
133
+ url={https://kexue.fm/archives/8847},
134
+ }
135
+ ```