Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- loss:CoSENTLoss
|
8 |
+
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
9 |
+
widget:
|
10 |
+
- source_sentence: I'm important.
|
11 |
+
sentences:
|
12 |
+
- I'm big.
|
13 |
+
- kili li tawa anpa poka kasi.
|
14 |
+
- mi suli.
|
15 |
+
- source_sentence: mi suli.
|
16 |
+
sentences:
|
17 |
+
- I'm fat.
|
18 |
+
- I'm big.
|
19 |
+
- kili li tawa anpa poka kasi.
|
20 |
+
- source_sentence: I am tall.
|
21 |
+
sentences:
|
22 |
+
- I'm fat.
|
23 |
+
- mi suli.
|
24 |
+
- The apple does not fall far from the tree.
|
25 |
+
- source_sentence: I am tall.
|
26 |
+
sentences:
|
27 |
+
- I'm important.
|
28 |
+
- kili li tawa anpa poka kasi.
|
29 |
+
- mi suli.
|
30 |
+
- source_sentence: mi suli.
|
31 |
+
sentences:
|
32 |
+
- The apple does not fall far from the tree.
|
33 |
+
- The apple does not fall far from the tree.
|
34 |
+
- mi suli.
|
35 |
+
pipeline_tag: sentence-similarity
|
36 |
+
library_name: sentence-transformers
|
37 |
+
---
|
38 |
+
|
39 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
40 |
+
|
41 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
42 |
+
|
43 |
+
## Model Details
|
44 |
+
|
45 |
+
### Model Description
|
46 |
+
- **Model Type:** Sentence Transformer
|
47 |
+
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 8d6b950845285729817bf8e1af1861502c2fed0c -->
|
48 |
+
- **Maximum Sequence Length:** 128 tokens
|
49 |
+
- **Output Dimensionality:** 384 tokens
|
50 |
+
- **Similarity Function:** Cosine Similarity
|
51 |
+
<!-- - **Training Dataset:** Unknown -->
|
52 |
+
<!-- - **Language:** Unknown -->
|
53 |
+
<!-- - **License:** Unknown -->
|
54 |
+
|
55 |
+
### Model Sources
|
56 |
+
|
57 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
58 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
59 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
60 |
+
|
61 |
+
### Full Model Architecture
|
62 |
+
|
63 |
+
```
|
64 |
+
SentenceTransformer(
|
65 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
66 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
67 |
+
)
|
68 |
+
```
|
69 |
+
|
70 |
+
## Usage
|
71 |
+
|
72 |
+
### Direct Usage (Sentence Transformers)
|
73 |
+
|
74 |
+
First install the Sentence Transformers library:
|
75 |
+
|
76 |
+
```bash
|
77 |
+
pip install -U sentence-transformers
|
78 |
+
```
|
79 |
+
|
80 |
+
Then you can load this model and run inference.
|
81 |
+
```python
|
82 |
+
from sentence_transformers import SentenceTransformer
|
83 |
+
|
84 |
+
# Download from the 🤗 Hub
|
85 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
86 |
+
# Run inference
|
87 |
+
sentences = [
|
88 |
+
'mi suli.',
|
89 |
+
'The apple does not fall far from the tree.',
|
90 |
+
'The apple does not fall far from the tree.',
|
91 |
+
]
|
92 |
+
embeddings = model.encode(sentences)
|
93 |
+
print(embeddings.shape)
|
94 |
+
# [3, 384]
|
95 |
+
|
96 |
+
# Get the similarity scores for the embeddings
|
97 |
+
similarities = model.similarity(embeddings, embeddings)
|
98 |
+
print(similarities.shape)
|
99 |
+
# [3, 3]
|
100 |
+
```
|
101 |
+
|
102 |
+
## Training Details
|
103 |
+
|
104 |
+
### Framework Versions
|
105 |
+
- Python: 3.10.12
|
106 |
+
- Sentence Transformers: 3.2.1
|
107 |
+
- Transformers: 4.42.2
|
108 |
+
- PyTorch: 2.5.1+cu121
|
109 |
+
- Accelerate: 1.1.1
|
110 |
+
- Datasets: 3.1.0
|
111 |
+
- Tokenizers: 0.19.1
|
112 |
+
|
113 |
+
#### Sentence Transformers
|
114 |
+
```bibtex
|
115 |
+
@inproceedings{reimers-2019-sentence-bert,
|
116 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
117 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
118 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
119 |
+
month = "11",
|
120 |
+
year = "2019",
|
121 |
+
publisher = "Association for Computational Linguistics",
|
122 |
+
url = "https://arxiv.org/abs/1908.10084",
|
123 |
+
}
|
124 |
+
```
|
125 |
+
|
126 |
+
#### CoSENTLoss
|
127 |
+
```bibtex
|
128 |
+
@online{kexuefm-8847,
|
129 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
130 |
+
author={Su Jianlin},
|
131 |
+
year={2022},
|
132 |
+
month={Jan},
|
133 |
+
url={https://kexue.fm/archives/8847},
|
134 |
+
}
|
135 |
+
```
|