Initial commit
Browse files- config.json +27 -0
- model.py +366 -0
- model.safetensors +3 -0
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "johntsi/ZeroSwot-Medium_asr-cv_en-to-200/model.safetensors",
|
3 |
+
"architectures": [
|
4 |
+
"ZeroSwotEncoderModel"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "model.ZeroSwotEncoderConfig",
|
8 |
+
"AutoModel": "model.ZeroSwotEncoderModel"
|
9 |
+
},
|
10 |
+
"compression_adapter": {
|
11 |
+
"blank_idx": 0,
|
12 |
+
"dropout": 0.1,
|
13 |
+
"embed_dim": 1024,
|
14 |
+
"sep_idx": 4,
|
15 |
+
"transformer_layers": 3
|
16 |
+
},
|
17 |
+
"embed_dim": 1024,
|
18 |
+
"model_type": "zero_swot_encoder",
|
19 |
+
"nllb_model_name_or_path": "facebook/nllb-200-distilled-600M",
|
20 |
+
"speech_embedder": {
|
21 |
+
"nllb_eng_id": 256047,
|
22 |
+
"nllb_eos_id": 2
|
23 |
+
},
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.41.2",
|
26 |
+
"wav2vec2_model_name_or_path": "facebook/wav2vec2-large-960h-lv60-self"
|
27 |
+
}
|
model.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel, PretrainedConfig, Wav2Vec2ForCTC
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn.utils.rnn import pad_sequence
|
6 |
+
import math
|
7 |
+
from typing import Optional
|
8 |
+
|
9 |
+
# x: torch.FloatTensor [T, B, D]
|
10 |
+
# mask: torch.BoolTensor [B, T], where True indicates padding
|
11 |
+
# returns: torch.LongTensor [B]
|
12 |
+
def get_lengths(x, mask=None):
|
13 |
+
if mask is not None:
|
14 |
+
return (~mask).long().sum(dim=1)
|
15 |
+
else:
|
16 |
+
return torch.LongTensor([x.size(0)] * x.size(1)).to(x.device)
|
17 |
+
|
18 |
+
# lens: torch.LongTensor [B]
|
19 |
+
# returns: torch.BoolTensor [B, max_lens], where True indicates padding
|
20 |
+
def lengths_to_padding_mask(lens):
|
21 |
+
bsz, max_lens = lens.size(0), torch.max(lens).item()
|
22 |
+
mask = torch.arange(max_lens).to(lens.device).view(1, max_lens)
|
23 |
+
mask = mask.expand(bsz, -1) >= lens.view(bsz, 1).expand(-1, max_lens)
|
24 |
+
return mask
|
25 |
+
|
26 |
+
# input_lengths: torch.LongTensor [B]
|
27 |
+
def get_output_lengths(input_lengths):
|
28 |
+
conv_feature_layers = "[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]"
|
29 |
+
conv_cfg_list = eval(conv_feature_layers)
|
30 |
+
|
31 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
32 |
+
return torch.floor((input_length - kernel_size) / stride + 1)
|
33 |
+
|
34 |
+
for i in range(len(conv_cfg_list)):
|
35 |
+
input_lengths = _conv_out_length(
|
36 |
+
input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
|
37 |
+
)
|
38 |
+
|
39 |
+
return input_lengths.to(torch.long)
|
40 |
+
|
41 |
+
class ZeroSwotEncoderConfig(PretrainedConfig):
|
42 |
+
model_type = "zero_swot_encoder"
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
wav2vec2_model_name_or_path="",
|
46 |
+
compression_adapter=None,
|
47 |
+
embed_dim=1024,
|
48 |
+
**kwargs
|
49 |
+
):
|
50 |
+
super().__init__(**kwargs)
|
51 |
+
self.wav2vec2_model_name_or_path = wav2vec2_model_name_or_path
|
52 |
+
self.compression_adapter = compression_adapter
|
53 |
+
self.embed_dim = embed_dim
|
54 |
+
|
55 |
+
@classmethod
|
56 |
+
def from_json_file(cls, json_file):
|
57 |
+
with open(json_file, "r") as reader:
|
58 |
+
text = reader.read()
|
59 |
+
config_dict = json.loads(text)
|
60 |
+
return cls(**config_dict)
|
61 |
+
|
62 |
+
class ZeroSwotEncoderModel(PreTrainedModel):
|
63 |
+
config_class = ZeroSwotEncoderConfig
|
64 |
+
model_type = "zero_swot_encoder"
|
65 |
+
|
66 |
+
def __init__(self, config):
|
67 |
+
super().__init__(config)
|
68 |
+
|
69 |
+
self.wav2vec2 = Wav2Vec2ForCTC.from_pretrained(config.wav2vec2_model_name_or_path)
|
70 |
+
self.compression_adapter = CompressionAdapter(config.compression_adapter)
|
71 |
+
self.speech_embedder = SpeechEmbedder(config.embed_dim)
|
72 |
+
|
73 |
+
def forward(self, input_values, attention_mask=None):
|
74 |
+
input_lens = get_lengths(input_values, ~attention_mask)
|
75 |
+
|
76 |
+
# Forward pass through wav2vec2 encoder
|
77 |
+
x = self.wav2vec2.wav2vec2(input_values, attention_mask)[0] # [B, T, D]
|
78 |
+
# CTC predictions
|
79 |
+
preds = self.wav2vec2.lm_head(x).argmax(-1) # [B, T]
|
80 |
+
# Get output lengths for x
|
81 |
+
output_lens = get_output_lengths(input_lens)
|
82 |
+
|
83 |
+
# Compression
|
84 |
+
x, mask, _ = self.compression_adapter(x, preds, output_lens) # [B, N, D] with N << T
|
85 |
+
|
86 |
+
# BOS and EOS embeddings
|
87 |
+
x, mask = self.speech_embedder(x, mask) # [B, N+2, D]
|
88 |
+
|
89 |
+
return x, mask
|
90 |
+
|
91 |
+
|
92 |
+
class SpeechEmbedder(nn.Module):
|
93 |
+
def __init__(self, embed_dim):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
self.embed_dim = embed_dim
|
97 |
+
self.bos_emb = nn.Parameter(torch.empty(embed_dim))
|
98 |
+
self.eos_emb = nn.Parameter(torch.empty(embed_dim))
|
99 |
+
|
100 |
+
self.scale = self.embed_dim ** 0.5
|
101 |
+
|
102 |
+
def forward(self, x, padding_mask=None):
|
103 |
+
"""Add special embedding and positional embedding.
|
104 |
+
Args:
|
105 |
+
x (FloatTensor): (B, T, C)
|
106 |
+
padding_mask (ByteTensor): (B, T)
|
107 |
+
Outputs:
|
108 |
+
x (FloatTensor): (B, T+2, C)
|
109 |
+
padding_mask (ByteTensor): (B, T+2)
|
110 |
+
"""
|
111 |
+
B = x.size(0)
|
112 |
+
lengths = get_lengths(x.transpose(0, 1), padding_mask)
|
113 |
+
assert B == len(lengths)
|
114 |
+
|
115 |
+
if padding_mask is not None:
|
116 |
+
x = x * (1 - padding_mask.unsqueeze(-1).type_as(x))
|
117 |
+
|
118 |
+
# prepend bos
|
119 |
+
x = torch.cat([self.bos_emb.view(1, 1, -1).expand(B, 1, -1), x], dim=1)
|
120 |
+
lengths += 1
|
121 |
+
|
122 |
+
# append padding (zeros) and then convert first padding to eos
|
123 |
+
x = torch.cat([x, torch.zeros(B, 1, x.size(-1), device=x.device, dtype=x.dtype)], dim=1)
|
124 |
+
for i in range(B):
|
125 |
+
x[i, lengths[i], :] = self.eos_emb
|
126 |
+
lengths += 1
|
127 |
+
|
128 |
+
padding_mask = lengths_to_padding_mask(lengths)
|
129 |
+
|
130 |
+
x = x * self.scale
|
131 |
+
|
132 |
+
return x, padding_mask
|
133 |
+
|
134 |
+
|
135 |
+
class PositionalEmbedding(nn.Module):
|
136 |
+
def __init__(self, num_embeddings, embedding_dim, padding_idx):
|
137 |
+
super().__init__()
|
138 |
+
self.embedding_dim = embedding_dim
|
139 |
+
self.padding_idx = padding_idx if padding_idx is not None else 0
|
140 |
+
num_embeddings += padding_idx + 1
|
141 |
+
self.weights = PositionalEmbedding.get_embedding(
|
142 |
+
num_embeddings, embedding_dim, padding_idx
|
143 |
+
)
|
144 |
+
self.register_buffer("_float_tensor", torch.FloatTensor(1))
|
145 |
+
self.max_positions = int(1e5)
|
146 |
+
|
147 |
+
@staticmethod
|
148 |
+
def get_embedding(
|
149 |
+
num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None
|
150 |
+
):
|
151 |
+
half_dim = embedding_dim // 2
|
152 |
+
emb = math.log(10000) / (half_dim - 1)
|
153 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
|
154 |
+
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
|
155 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
156 |
+
if embedding_dim % 2 == 1:
|
157 |
+
# zero pad
|
158 |
+
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
159 |
+
if padding_idx is not None:
|
160 |
+
emb[padding_idx, :] = 0
|
161 |
+
return emb
|
162 |
+
|
163 |
+
def make_positions(self, x, padding_idx: int):
|
164 |
+
mask = x.ne(padding_idx).int()
|
165 |
+
return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx
|
166 |
+
|
167 |
+
def forward(self, input):
|
168 |
+
"""Input is expected to be of size [bsz x seqlen]."""
|
169 |
+
bsz, seq_len = input.size()
|
170 |
+
max_pos = self.padding_idx + 1 + seq_len
|
171 |
+
if self.weights is None or max_pos > self.weights.size(0):
|
172 |
+
# recompute/expand embeddings if needed
|
173 |
+
self.weights = PositionalEmbedding.get_embedding(
|
174 |
+
max_pos, self.embedding_dim, self.padding_idx
|
175 |
+
)
|
176 |
+
self.weights = self.weights.to(self._float_tensor)
|
177 |
+
positions = self.make_positions(input, self.padding_idx)
|
178 |
+
return (
|
179 |
+
self.weights.index_select(0, positions.view(-1))
|
180 |
+
.view(bsz, seq_len, -1)
|
181 |
+
.detach()
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
class CLSPooling(nn.Module):
|
186 |
+
def __init__(self, embed_dim, num_transformer_layers, dropout_rate):
|
187 |
+
super().__init__()
|
188 |
+
|
189 |
+
self.cls_token = nn.Parameter(torch.empty(1, 1, embed_dim))
|
190 |
+
nn.init.normal_(self.cls_token, mean=0.0, std=0.25)
|
191 |
+
|
192 |
+
self.transformer = nn.TransformerEncoder(
|
193 |
+
nn.TransformerEncoderLayer(
|
194 |
+
embed_dim,
|
195 |
+
nhead=16 if embed_dim == 1024 else 8,
|
196 |
+
dim_feedforward=4*embed_dim,
|
197 |
+
dropout=dropout_rate,
|
198 |
+
activation="relu",
|
199 |
+
batch_first=True,
|
200 |
+
norm_first=True
|
201 |
+
),
|
202 |
+
num_layers=num_transformer_layers,
|
203 |
+
)
|
204 |
+
|
205 |
+
self.pos_emb = PositionalEmbedding(512, embed_dim, 1)
|
206 |
+
self.scale = math.sqrt(embed_dim)
|
207 |
+
|
208 |
+
def forward(self, x, lens):
|
209 |
+
# x: [B, N, D]
|
210 |
+
# lens: [B]
|
211 |
+
|
212 |
+
# prepend cls token
|
213 |
+
x = torch.cat(
|
214 |
+
[
|
215 |
+
self.cls_token.to(dtype=x.dtype, device=x.device).repeat(x.size(0), 1, 1), # B x 1 x D
|
216 |
+
x
|
217 |
+
],
|
218 |
+
dim=1) # [B, N+1, D]
|
219 |
+
|
220 |
+
mask = lengths_to_padding_mask(lens+1)
|
221 |
+
|
222 |
+
x = x + self.pos_emb(mask.long()) / self.scale
|
223 |
+
|
224 |
+
x = self.transformer(x, src_key_padding_mask=mask) # [B, N+1, D]
|
225 |
+
x = x[:, 0] # [B, D]
|
226 |
+
return x
|
227 |
+
|
228 |
+
|
229 |
+
class CompressionAdapter(nn.Module):
|
230 |
+
def __init__(self, cfg):
|
231 |
+
super().__init__()
|
232 |
+
self.embed_dim = cfg["embed_dim"]
|
233 |
+
self.transformer_layers = cfg["transformer_layers"]
|
234 |
+
self.dropout = cfg["dropout"]
|
235 |
+
self.blank_idx = cfg["blank_idx"]
|
236 |
+
self.sep_idx = cfg["sep_idx"]
|
237 |
+
|
238 |
+
self.token_pooling_module = CLSPooling(
|
239 |
+
self.embed_dim, self.transformer_layers, self.dropout
|
240 |
+
)
|
241 |
+
|
242 |
+
def char_compression(self, x, preds, lens):
|
243 |
+
# x: B x T x D
|
244 |
+
# preds: B x T
|
245 |
+
# lens: B
|
246 |
+
|
247 |
+
B, T, D = x.size()
|
248 |
+
device = x.device
|
249 |
+
dtype = x.dtype
|
250 |
+
|
251 |
+
# zero-out the padding
|
252 |
+
mask = lengths_to_padding_mask(lens) # B x T
|
253 |
+
x = x.masked_fill(mask.unsqueeze(-1), 0)
|
254 |
+
preds = preds.masked_fill(mask, self.blank_idx)
|
255 |
+
|
256 |
+
# add a vector of -1 to know where each example ends after flattening the batch
|
257 |
+
preds = torch.cat([-torch.ones(B, 1, device=device, dtype=torch.long), preds], dim=1).view(-1)
|
258 |
+
x = torch.cat([torch.zeros(B, 1, D, device=device, dtype=dtype), x], dim=1).view(-1, D)
|
259 |
+
|
260 |
+
# get points of consecutive preds
|
261 |
+
preds, counts = preds.unique_consecutive(return_counts=True)
|
262 |
+
|
263 |
+
# split in representations of same chars
|
264 |
+
x = torch.split(x, counts.tolist())
|
265 |
+
|
266 |
+
# remove blanks
|
267 |
+
valid_mask = preds != self.blank_idx
|
268 |
+
preds = preds[valid_mask]
|
269 |
+
counts = counts[valid_mask] # [N]
|
270 |
+
x = [x_i for x_i, v_i in zip(x, valid_mask) if v_i]
|
271 |
+
|
272 |
+
# pack into tensor
|
273 |
+
x = pad_sequence(x, batch_first=True, padding_value=0)
|
274 |
+
|
275 |
+
# char pooling
|
276 |
+
x = torch.sum(x, dim=1) / counts.to(dtype=x.dtype).unsqueeze(1) # [B, N, D] -> [B, D]
|
277 |
+
|
278 |
+
# find split points for retrieving the examples
|
279 |
+
split_points = (preds == -1).nonzero(as_tuple=True)[0]
|
280 |
+
split_points = torch.cat([split_points, torch.tensor([len(preds)], device=device)])
|
281 |
+
split_points = (split_points[1:] - split_points[:-1]).tolist()
|
282 |
+
|
283 |
+
# split into examples
|
284 |
+
x = torch.split(x, split_points)
|
285 |
+
preds = torch.split(preds, split_points)
|
286 |
+
lens = torch.tensor([len(x_i) for x_i in x], device=device)
|
287 |
+
|
288 |
+
# pack into tensors
|
289 |
+
x = pad_sequence(x, batch_first=True, padding_value=0)
|
290 |
+
preds = pad_sequence(preds, batch_first=True, padding_value=self.blank_idx)
|
291 |
+
|
292 |
+
# remove the parts we add to identify the bounds for each example
|
293 |
+
x = x[:, 1:]
|
294 |
+
preds = preds[:, 1:]
|
295 |
+
lens -= 1
|
296 |
+
|
297 |
+
mask = lengths_to_padding_mask(lens)
|
298 |
+
|
299 |
+
# account for empty examples (just a sep token)
|
300 |
+
empty_examples = lens == 0
|
301 |
+
num_empty_examples = empty_examples.sum()
|
302 |
+
if num_empty_examples > 0:
|
303 |
+
mask[empty_examples, 0] = True
|
304 |
+
lens[empty_examples] = 1
|
305 |
+
preds[empty_examples, 0] = self.sep_idx
|
306 |
+
|
307 |
+
return x, mask, lens, preds, num_empty_examples
|
308 |
+
|
309 |
+
def token_compression(self, x, preds, lens):
|
310 |
+
# x: B x T x D
|
311 |
+
# preds: B x T
|
312 |
+
# lens: B
|
313 |
+
|
314 |
+
B, T, D = x.size()
|
315 |
+
device = x.device
|
316 |
+
dtype = x.dtype
|
317 |
+
|
318 |
+
# new lengths after compression
|
319 |
+
new_lens = preds.eq(self.sep_idx).sum(dim=1)
|
320 |
+
|
321 |
+
# unpad and unpack to list of tensors
|
322 |
+
preds = [preds[i, :lens[i]] for i in range(B)]
|
323 |
+
x = [x[i, :lens[i]] for i in range(B)]
|
324 |
+
|
325 |
+
# make sure every example ends with a separator
|
326 |
+
num_examples_without_ending_sep = torch.tensor(0, device=device, dtype=torch.long)
|
327 |
+
for i in range(B):
|
328 |
+
if preds[i][-1] != self.sep_idx:
|
329 |
+
preds[i] = torch.cat([preds[i], torch.tensor([self.sep_idx], device=device, dtype=torch.long)])
|
330 |
+
x[i] = torch.cat([x[i], torch.zeros(1, D, device=device, dtype=dtype)])
|
331 |
+
new_lens[i] += 1
|
332 |
+
num_examples_without_ending_sep += 1
|
333 |
+
|
334 |
+
# flatten
|
335 |
+
preds = torch.cat(preds)
|
336 |
+
x = torch.cat(x)
|
337 |
+
|
338 |
+
# split points according to separators
|
339 |
+
split_points = preds.eq(self.sep_idx).nonzero(as_tuple=True)[0] + 1
|
340 |
+
split_points = torch.cat([torch.tensor([0], device=device, dtype=torch.long), split_points])
|
341 |
+
split_points = (split_points[1:] - split_points[:-1]).tolist()
|
342 |
+
|
343 |
+
# re-arrange in 3d [total_num_tokens x max(count) x D]
|
344 |
+
x = torch.split(x, split_points) # Tuple[2d tensor]
|
345 |
+
|
346 |
+
counts = torch.tensor([len(x_i) for x_i in x], device=device, dtype=torch.long)
|
347 |
+
x = pad_sequence(x, batch_first=True, padding_value=0)
|
348 |
+
|
349 |
+
# reduce dim 1
|
350 |
+
x = self.token_pooling_module(x, counts)
|
351 |
+
|
352 |
+
# reconstruct the batch
|
353 |
+
split_points = new_lens.cumsum(dim=0)
|
354 |
+
split_points = torch.cat([torch.tensor([0], device=device, dtype=torch.long), split_points])
|
355 |
+
split_points = (split_points[1:] - split_points[:-1]).tolist()
|
356 |
+
x = torch.split(x, split_points)
|
357 |
+
x = pad_sequence(x, batch_first=True, padding_value=0) # B x ? x D
|
358 |
+
|
359 |
+
mask = lengths_to_padding_mask(new_lens)
|
360 |
+
|
361 |
+
return x, mask, new_lens, num_examples_without_ending_sep
|
362 |
+
|
363 |
+
def forward(self, x, preds, lens):
|
364 |
+
x, mask, lens, preds, _ = self.char_compression(x, preds, lens)
|
365 |
+
x, mask, lens, _ = self.token_compression(x, preds, lens)
|
366 |
+
return x, mask, lens
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6792b4306ac0fd8b69d96937da34fb88c6543983768bc77d8954ca13dd71169a
|
3 |
+
size 1413115412
|