josejointriple commited on
Commit
fd256f5
·
verified ·
1 Parent(s): defcf28

Upload DistilBertForSequenceClassification

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +1131 -0
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,1131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassification"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "unknown",
13
+ "1": "2theloo",
14
+ "2": "365 Retail Markets",
15
+ "3": "A1",
16
+ "4": "A4 Brescia Padova",
17
+ "5": "AMZS",
18
+ "6": "ASFINAG",
19
+ "7": "ASICS",
20
+ "8": "ATAC",
21
+ "9": "ATU",
22
+ "10": "AWS",
23
+ "11": "Abacus Cooperativa",
24
+ "12": "Accounting and Corporate Regulatory Authority",
25
+ "13": "Advance Auto Parts",
26
+ "14": "Adyen",
27
+ "15": "Aelia Duty Free",
28
+ "16": "Aida",
29
+ "17": "Air Europa",
30
+ "18": "Akakiko",
31
+ "19": "Alamo",
32
+ "20": "Alcott",
33
+ "21": "Alipay",
34
+ "22": "Alldrink",
35
+ "23": "Allo Pizza",
36
+ "24": "Al\u00ec Supermercati",
37
+ "25": "AmRest",
38
+ "26": "Amazon Kids+",
39
+ "27": "American Eagle Outfitter",
40
+ "28": "American Express",
41
+ "29": "Amorino",
42
+ "30": "Apollo Kino",
43
+ "31": "Appart'City",
44
+ "32": "April",
45
+ "33": "Arabica Coffee",
46
+ "34": "Areas",
47
+ "35": "Arenal",
48
+ "36": "Atlantsol\u00eda",
49
+ "37": "Atm.it",
50
+ "38": "Audi",
51
+ "39": "AutoZone",
52
+ "40": "Autopistas",
53
+ "41": "Aux Delices",
54
+ "42": "Avianca Airlines",
55
+ "43": "Avoca",
56
+ "44": "B+B Parkhaus",
57
+ "45": "BCC Roma",
58
+ "46": "BNP Paribas",
59
+ "47": "BVG",
60
+ "48": "Backstube W\u00fcnsche",
61
+ "49": "Badische Backstub",
62
+ "50": "Bargain Booze",
63
+ "51": "Basic-Fit",
64
+ "52": "BayWa",
65
+ "53": "Bellaflora",
66
+ "54": "Best-One",
67
+ "55": "Beyfin",
68
+ "56": "Bi1",
69
+ "57": "Bico de Xeado",
70
+ "58": "BigMat",
71
+ "59": "Bingo City Center",
72
+ "60": "Bird",
73
+ "61": "Blaze Pizza",
74
+ "62": "Block House",
75
+ "63": "Blokker",
76
+ "64": "Bombon Boss",
77
+ "65": "Bookstation",
78
+ "66": "Boom Battle Bar",
79
+ "67": "Boost Juice Bars",
80
+ "68": "Boulangerie Ange",
81
+ "69": "Boursorama",
82
+ "70": "Boux Avenue",
83
+ "71": "Brandy Melville",
84
+ "72": "Bricorama",
85
+ "73": "Bubble",
86
+ "74": "Buc-ee's",
87
+ "75": "BudgetAir",
88
+ "76": "Bund.de",
89
+ "77": "Bupa",
90
+ "78": "Bureau Vall\u00e9e",
91
+ "79": "Burgermeister",
92
+ "80": "Butlers",
93
+ "81": "Bwin",
94
+ "82": "B\u00e4ckerei Bauder",
95
+ "83": "B\u00e4ckerei Drei\u00dfig",
96
+ "84": "B\u00e4ckerei Hoefer",
97
+ "85": "B\u00e4ckerei Terbuyken",
98
+ "86": "B\u00e4ckerei Werning",
99
+ "87": "B\u00e4ckermeister Haferkamp",
100
+ "88": "CAP-Markt",
101
+ "89": "CBA",
102
+ "90": "CIBTP",
103
+ "91": "CVMaker.uk",
104
+ "92": "Caf De Paris",
105
+ "93": "Cafe & Bar Celona",
106
+ "94": "Cafe del Sol",
107
+ "95": "Caja Rural",
108
+ "96": "Cake Box",
109
+ "97": "Calpam",
110
+ "98": "Calvin Klein",
111
+ "99": "Canteen",
112
+ "100": "Careem",
113
+ "101": "Carhartt",
114
+ "102": "Caribou Coffee",
115
+ "103": "Carter's",
116
+ "104": "Casa del Libro",
117
+ "105": "Cats Protection",
118
+ "106": "Centauro Rent a Car",
119
+ "107": "Center Parcs",
120
+ "108": "Centrakor",
121
+ "109": "Certa",
122
+ "110": "ChargePoint",
123
+ "111": "Checkers",
124
+ "112": "Cinemark",
125
+ "113": "Cineplex",
126
+ "114": "Cinesa",
127
+ "115": "Cineworld",
128
+ "116": "CitizenM",
129
+ "117": "City Gross",
130
+ "118": "City Market",
131
+ "119": "City of Quebec",
132
+ "120": "Clarks",
133
+ "121": "Coin.it",
134
+ "122": "Columbus Cafe",
135
+ "123": "Conrad",
136
+ "124": "Copa Airlines",
137
+ "125": "Coutellerie La Civette",
138
+ "126": "Credit Engine",
139
+ "127": "Crunchyroll",
140
+ "128": "Curzon",
141
+ "129": "DGFIP",
142
+ "130": "DPD",
143
+ "131": "DPMCB",
144
+ "132": "Daiso",
145
+ "133": "Day Today",
146
+ "134": "Dec\u00f2",
147
+ "135": "DeepL",
148
+ "136": "Dehner",
149
+ "137": "Deiters",
150
+ "138": "Delitraiteur",
151
+ "139": "Delmart",
152
+ "140": "Der B\u00e4cker Ruetz",
153
+ "141": "Der Rundfunkbeitrag",
154
+ "142": "Deutsche Bank",
155
+ "143": "Deutsche Post",
156
+ "144": "Deutsche Rentenversicherung",
157
+ "145": "Digital River",
158
+ "146": "Disa",
159
+ "147": "Dishoom",
160
+ "148": "Disney+",
161
+ "149": "Dnata",
162
+ "150": "Dom Lek\u00f3w",
163
+ "151": "Dr Martens",
164
+ "152": "Dussmann",
165
+ "153": "Dyson",
166
+ "154": "E.ON",
167
+ "155": "EE",
168
+ "156": "EOS",
169
+ "157": "EasyPark",
170
+ "158": "Ebl-Naturkost",
171
+ "159": "Edenred",
172
+ "160": "Eharmony",
173
+ "161": "Eko Okna",
174
+ "162": "El Rinc\u00f3n",
175
+ "163": "Elior",
176
+ "164": "Emirates Leisure Retail",
177
+ "165": "Emmerys",
178
+ "166": "EnBW",
179
+ "167": "Enchilada",
180
+ "168": "Engie",
181
+ "169": "Enrique Tomas",
182
+ "170": "Enterprise Rent-A-Car",
183
+ "171": "Ergo",
184
+ "172": "EsclatOil",
185
+ "173": "Etam",
186
+ "174": "Etsan",
187
+ "175": "EuroPark",
188
+ "176": "Everest",
189
+ "177": "F1 Gas",
190
+ "178": "FEBO",
191
+ "179": "FairPrice",
192
+ "180": "Farmacias Benavides",
193
+ "181": "Fastweb",
194
+ "182": "Feu Vert",
195
+ "183": "Fina",
196
+ "184": "Firehouse Subs",
197
+ "185": "Fitinn",
198
+ "186": "FlixBus",
199
+ "187": "Flyeralarm",
200
+ "188": "Footasylum",
201
+ "189": "Four Seasons",
202
+ "190": "Frankonia",
203
+ "191": "Free People",
204
+ "192": "Freie Tankstelle",
205
+ "193": "G La Dalle",
206
+ "194": "GAME",
207
+ "195": "GNC",
208
+ "196": "Galaxias",
209
+ "197": "Galaxus",
210
+ "198": "Galeries Lafayette",
211
+ "199": "Gall & Gall",
212
+ "200": "Gamma",
213
+ "201": "Gedimat",
214
+ "202": "Geldmaat",
215
+ "203": "Generali",
216
+ "204": "GetYourGuide",
217
+ "205": "Getgo",
218
+ "206": "Getr\u00e4nke Hoffmann",
219
+ "207": "GoDaddy",
220
+ "208": "Goldcar",
221
+ "209": "Google Fi",
222
+ "210": "Greens Supermarket",
223
+ "211": "Greffe du Tribunal",
224
+ "212": "Grenke",
225
+ "213": "Groupon",
226
+ "214": "Gucci",
227
+ "215": "Guess",
228
+ "216": "HD Hotels",
229
+ "217": "HSBC",
230
+ "218": "Hamburg Airport",
231
+ "219": "Hannaford",
232
+ "220": "Hans im Gl\u00fcck",
233
+ "221": "Harald Nyborg",
234
+ "222": "Hebe",
235
+ "223": "Heinemann",
236
+ "224": "HelloFresh",
237
+ "225": "Hermes",
238
+ "226": "Herm\u00e8s",
239
+ "227": "Hickey's Pharmacy",
240
+ "228": "Hilti",
241
+ "229": "Hilton Garden Inn",
242
+ "230": "Hilton Garden Inn Hotel",
243
+ "231": "Hiper Centro",
244
+ "232": "Holland & Barrett",
245
+ "233": "Hollister Co.",
246
+ "234": "Hollywood Bowl",
247
+ "235": "Honest Greens",
248
+ "236": "Hostinger",
249
+ "237": "Hotel Barcel\u00f3",
250
+ "238": "Hotel Mama Shelter",
251
+ "239": "Hotel Silken",
252
+ "240": "Hru\u0161ka",
253
+ "241": "Hudson",
254
+ "242": "Hugo Boss",
255
+ "243": "Humana",
256
+ "244": "HungryPanda",
257
+ "245": "Hyper U",
258
+ "246": "IC Cash Services",
259
+ "247": "IHK",
260
+ "248": "IQOS",
261
+ "249": "ISS World",
262
+ "250": "Illy",
263
+ "251": "Ilusiona",
264
+ "252": "In-N-Out Burger",
265
+ "253": "Ingram Micro",
266
+ "254": "Insomnia Coffee",
267
+ "255": "InterContinental",
268
+ "256": "Interparking",
269
+ "257": "Iperal",
270
+ "258": "Italmark",
271
+ "259": "JP \"Putevi Srbije\"",
272
+ "260": "Jack & Jones",
273
+ "261": "Jacques' Wein-Depot",
274
+ "262": "Jadrolinija",
275
+ "263": "Juan Valdez",
276
+ "264": "Jumeirah",
277
+ "265": "Jump Juice Bar",
278
+ "266": "JustAnswer",
279
+ "267": "K-Rauta",
280
+ "268": "KKH",
281
+ "269": "KRAJ",
282
+ "270": "KTC",
283
+ "271": "Kastner & \u00d6hler",
284
+ "272": "Kinepolis",
285
+ "273": "Klarna",
286
+ "274": "Kramb\u00fa\u00f0",
287
+ "275": "Kravag",
288
+ "276": "Kritikos",
289
+ "277": "Kwik Trip",
290
+ "278": "LNER",
291
+ "279": "LPA",
292
+ "280": "La Fourn\u00e9e",
293
+ "281": "La Sirena",
294
+ "282": "La Vie Claire",
295
+ "283": "Lacoste",
296
+ "284": "Lariviere",
297
+ "285": "Lastminute.com",
298
+ "286": "Le Burger",
299
+ "287": "Le Crobag",
300
+ "288": "Le Five",
301
+ "289": "Le Paradis du Fruit",
302
+ "290": "Lebara",
303
+ "291": "Lefties",
304
+ "292": "Legoland",
305
+ "293": "Leon Restaurants",
306
+ "294": "Les D\u00e9lices",
307
+ "295": "Levaduramadre",
308
+ "296": "Lindt",
309
+ "297": "Lloyds Farmacia",
310
+ "298": "Loblaws",
311
+ "299": "Localiza",
312
+ "300": "Lojas Renner",
313
+ "301": "Longchamp",
314
+ "302": "Lotto",
315
+ "303": "Lovisa",
316
+ "304": "Lush Cosmetics",
317
+ "305": "MTA",
318
+ "306": "MVG",
319
+ "307": "Macy's",
320
+ "308": "Maiora",
321
+ "309": "Maison de la Presse",
322
+ "310": "Maisons du Monde",
323
+ "311": "Manchester Airport",
324
+ "312": "Manufactum",
325
+ "313": "March\u00e9 Schweiz",
326
+ "314": "Marco's Pizza",
327
+ "315": "Marien-Apotheke Krailling",
328
+ "316": "Markant",
329
+ "317": "Markant Supermarkt",
330
+ "318": "Market Basket",
331
+ "319": "Massimo Dutti",
332
+ "320": "Medi-Market",
333
+ "321": "Meijer",
334
+ "322": "Meininger Hotels",
335
+ "323": "Mercado Extra",
336
+ "324": "Mercedes-Benz",
337
+ "325": "Merkur",
338
+ "326": "Meu Super",
339
+ "327": "Micromania",
340
+ "328": "Minecraft",
341
+ "329": "Minera",
342
+ "330": "Miscusi",
343
+ "331": "Mladinska",
344
+ "332": "Mon Voisin",
345
+ "333": "Mondadori Store",
346
+ "334": "MoneyGram",
347
+ "335": "Moto Motorway",
348
+ "336": "Mr. Bricolage",
349
+ "337": "Mundorf Tank",
350
+ "338": "M\u00f6belix",
351
+ "339": "M\u0113ness aptieka",
352
+ "340": "NOZ",
353
+ "341": "Nah & Gut",
354
+ "342": "National Rail",
355
+ "343": "Nayax",
356
+ "344": "Netto Denmark",
357
+ "345": "Netto Marken-Discount",
358
+ "346": "Newcastle City Council",
359
+ "347": "Next",
360
+ "348": "Nordsee",
361
+ "349": "Norfa",
362
+ "350": "Notino",
363
+ "351": "N\u00fcrnberger Versicherung",
364
+ "352": "O'Reilly Auto Parts",
365
+ "353": "O'Tacos",
366
+ "354": "OK Mobility",
367
+ "355": "OKay",
368
+ "356": "OVHcloud",
369
+ "357": "Ochsner Sport",
370
+ "358": "Old Wild West",
371
+ "359": "Ole & Steen",
372
+ "360": "Omio",
373
+ "361": "Omniva",
374
+ "362": "Oney",
375
+ "363": "OnlyFans",
376
+ "364": "OpenCor Vending",
377
+ "365": "Osiander",
378
+ "366": "P.F. Chang's",
379
+ "367": "POLOmarket",
380
+ "368": "PRIO",
381
+ "369": "Pad in Portugal",
382
+ "370": "Panet",
383
+ "371": "Panos",
384
+ "372": "Paracelsus Apotheke",
385
+ "373": "Parken",
386
+ "374": "Patagonia",
387
+ "375": "Peter Pane",
388
+ "376": "Pho",
389
+ "377": "Planet Fitness",
390
+ "378": "PlayStation",
391
+ "379": "Point Chaud",
392
+ "380": "Pokawa",
393
+ "381": "Poke House",
394
+ "382": "Polonez",
395
+ "383": "Pomme de Pain",
396
+ "384": "Post Luxembourg",
397
+ "385": "Potraviny",
398
+ "386": "Power.dk",
399
+ "387": "Proxi",
400
+ "388": "Proxim Supermercado",
401
+ "389": "Public Storage",
402
+ "390": "Putka",
403
+ "391": "Qonto",
404
+ "392": "RTA",
405
+ "393": "Radatz",
406
+ "394": "Radstock Co-operative",
407
+ "395": "Ralphs",
408
+ "396": "Real",
409
+ "397": "Riachuelo",
410
+ "398": "Ring",
411
+ "399": "RingGo",
412
+ "400": "Roblox",
413
+ "401": "Rocket Lawyer",
414
+ "402": "Roku",
415
+ "403": "Rontec",
416
+ "404": "Rossopomodoro",
417
+ "405": "Ruch",
418
+ "406": "SFR",
419
+ "407": "STACH",
420
+ "408": "Samsung",
421
+ "409": "SandwiChez",
422
+ "410": "Santagloria",
423
+ "411": "Saturn",
424
+ "412": "Second Cup",
425
+ "413": "Selfridges",
426
+ "414": "Servei Estaci\u00f3",
427
+ "415": "Service NSW",
428
+ "416": "Sigma",
429
+ "417": "Silvan",
430
+ "418": "Six",
431
+ "419": "Slim Chickens",
432
+ "420": "Smart Parking",
433
+ "421": "Smarty Cashback",
434
+ "422": "Smullers",
435
+ "423": "Snappy Snaps",
436
+ "424": "Sokos Hotels",
437
+ "425": "Sonnen Apotheke",
438
+ "426": "Spar University",
439
+ "427": "Spearhead Taxis",
440
+ "428": "Spinneys",
441
+ "429": "Sportler",
442
+ "430": "Sp\u00e4tkauf",
443
+ "431": "Square",
444
+ "432": "Stadt Wien",
445
+ "433": "Stadt-Apotheke",
446
+ "434": "Star Tankstelle",
447
+ "435": "Stark Deutschland",
448
+ "436": "Steam",
449
+ "437": "Stena Line",
450
+ "438": "Stockmann",
451
+ "439": "Stripe",
452
+ "440": "Stroili Oro",
453
+ "441": "SumUp",
454
+ "442": "Suma",
455
+ "443": "Suma Supermercados",
456
+ "444": "Super Muffato",
457
+ "445": "Super-Pharm",
458
+ "446": "SuperFit",
459
+ "447": "Superbet",
460
+ "448": "Supermercado Bip Bip",
461
+ "449": "Swatch",
462
+ "450": "S\u00f8strene Grene",
463
+ "451": "T&G",
464
+ "452": "TGI Friday's",
465
+ "453": "Tabac Presse",
466
+ "454": "Taboola",
467
+ "455": "Tallink",
468
+ "456": "Tam",
469
+ "457": "Tank & Rast",
470
+ "458": "Tank Ono",
471
+ "459": "Team Autohof",
472
+ "460": "Teboil",
473
+ "461": "TeeGschwendner",
474
+ "462": "Telef\u00f3nica",
475
+ "463": "Temu",
476
+ "464": "Tenpin",
477
+ "465": "Thameslink",
478
+ "466": "The ASH",
479
+ "467": "The Alchemist",
480
+ "468": "The Coffee Bean & Tea Leaf",
481
+ "469": "The Copenhagen Metro",
482
+ "470": "The Fresh Market",
483
+ "471": "The Good Burger",
484
+ "472": "The North Face",
485
+ "473": "The Range",
486
+ "474": "The Social Hub",
487
+ "475": "The niu",
488
+ "476": "Thomann",
489
+ "477": "Three",
490
+ "478": "Tibits",
491
+ "479": "TikTok",
492
+ "480": "Tisak",
493
+ "481": "Tom Tailor",
494
+ "482": "Toom",
495
+ "483": "Top Oil",
496
+ "484": "Totally Wicked",
497
+ "485": "Toyota",
498
+ "486": "Trader Joe's",
499
+ "487": "TradingView",
500
+ "488": "Trainline",
501
+ "489": "TransAct",
502
+ "490": "Transact.de",
503
+ "491": "Transdev",
504
+ "492": "Transgourmet",
505
+ "493": "Transports Publics Genevois",
506
+ "494": "Transports Publics Lausannois",
507
+ "495": "Trenitalia",
508
+ "496": "Trgovina Krk",
509
+ "497": "Truffaut",
510
+ "498": "Turris",
511
+ "499": "Tu\u0161",
512
+ "500": "Twins Burger",
513
+ "501": "Twitch",
514
+ "502": "U Express",
515
+ "503": "U-Bahn",
516
+ "504": "UNICEF",
517
+ "505": "Under Armour",
518
+ "506": "Unide",
519
+ "507": "Unifree",
520
+ "508": "United Colors of Benetton",
521
+ "509": "VINCI Autoroutes",
522
+ "510": "Valvi",
523
+ "511": "Van der Valk Hotel",
524
+ "512": "Venchi",
525
+ "513": "VeniceBeach Fitness",
526
+ "514": "Veolia",
527
+ "515": "Viena",
528
+ "516": "Viena Restaurant",
529
+ "517": "Vio.com",
530
+ "518": "Vival",
531
+ "519": "Vivari Coffee & Bakery",
532
+ "520": "Vivid Seats",
533
+ "521": "Voi Scooters",
534
+ "522": "V\u00ednb\u00fa\u00f0in",
535
+ "523": "WMF",
536
+ "524": "Wallapop",
537
+ "525": "Walther Tankstelle",
538
+ "526": "Wasabi",
539
+ "527": "WeWork",
540
+ "528": "Weekday",
541
+ "529": "Weezevent",
542
+ "530": "Weldom",
543
+ "531": "Wenzel's the Bakers",
544
+ "532": "Wilma Wunder",
545
+ "533": "Wilson Parking",
546
+ "534": "Wise",
547
+ "535": "Wolt",
548
+ "536": "Women'secret",
549
+ "537": "Woodie's",
550
+ "538": "Woolworth",
551
+ "539": "XXL Sports & Outdoor",
552
+ "540": "Yves Rocher",
553
+ "541": "Zaxby's",
554
+ "542": "Zoho",
555
+ "543": "Zolpan",
556
+ "544": "Zorbas Bakery",
557
+ "545": "Zurich Insurance",
558
+ "546": "beObank",
559
+ "547": "eSmoking World",
560
+ "548": "\u00c5hl\u00e9ns",
561
+ "549": "\u00d6oB",
562
+ "550": "\u0395\u03bb\u03af\u03bd"
563
+ },
564
+ "initializer_range": 0.02,
565
+ "label2id": {
566
+ "2theloo": 1,
567
+ "365 Retail Markets": 2,
568
+ "A1": 3,
569
+ "A4 Brescia Padova": 4,
570
+ "AMZS": 5,
571
+ "ASFINAG": 6,
572
+ "ASICS": 7,
573
+ "ATAC": 8,
574
+ "ATU": 9,
575
+ "AWS": 10,
576
+ "Abacus Cooperativa": 11,
577
+ "Accounting and Corporate Regulatory Authority": 12,
578
+ "Advance Auto Parts": 13,
579
+ "Adyen": 14,
580
+ "Aelia Duty Free": 15,
581
+ "Aida": 16,
582
+ "Air Europa": 17,
583
+ "Akakiko": 18,
584
+ "Alamo": 19,
585
+ "Alcott": 20,
586
+ "Alipay": 21,
587
+ "Alldrink": 22,
588
+ "Allo Pizza": 23,
589
+ "Al\u00ec Supermercati": 24,
590
+ "AmRest": 25,
591
+ "Amazon Kids+": 26,
592
+ "American Eagle Outfitter": 27,
593
+ "American Express": 28,
594
+ "Amorino": 29,
595
+ "Apollo Kino": 30,
596
+ "Appart'City": 31,
597
+ "April": 32,
598
+ "Arabica Coffee": 33,
599
+ "Areas": 34,
600
+ "Arenal": 35,
601
+ "Atlantsol\u00eda": 36,
602
+ "Atm.it": 37,
603
+ "Audi": 38,
604
+ "AutoZone": 39,
605
+ "Autopistas": 40,
606
+ "Aux Delices": 41,
607
+ "Avianca Airlines": 42,
608
+ "Avoca": 43,
609
+ "B+B Parkhaus": 44,
610
+ "BCC Roma": 45,
611
+ "BNP Paribas": 46,
612
+ "BVG": 47,
613
+ "Backstube W\u00fcnsche": 48,
614
+ "Badische Backstub": 49,
615
+ "Bargain Booze": 50,
616
+ "Basic-Fit": 51,
617
+ "BayWa": 52,
618
+ "Bellaflora": 53,
619
+ "Best-One": 54,
620
+ "Beyfin": 55,
621
+ "Bi1": 56,
622
+ "Bico de Xeado": 57,
623
+ "BigMat": 58,
624
+ "Bingo City Center": 59,
625
+ "Bird": 60,
626
+ "Blaze Pizza": 61,
627
+ "Block House": 62,
628
+ "Blokker": 63,
629
+ "Bombon Boss": 64,
630
+ "Bookstation": 65,
631
+ "Boom Battle Bar": 66,
632
+ "Boost Juice Bars": 67,
633
+ "Boulangerie Ange": 68,
634
+ "Boursorama": 69,
635
+ "Boux Avenue": 70,
636
+ "Brandy Melville": 71,
637
+ "Bricorama": 72,
638
+ "Bubble": 73,
639
+ "Buc-ee's": 74,
640
+ "BudgetAir": 75,
641
+ "Bund.de": 76,
642
+ "Bupa": 77,
643
+ "Bureau Vall\u00e9e": 78,
644
+ "Burgermeister": 79,
645
+ "Butlers": 80,
646
+ "Bwin": 81,
647
+ "B\u00e4ckerei Bauder": 82,
648
+ "B\u00e4ckerei Drei\u00dfig": 83,
649
+ "B\u00e4ckerei Hoefer": 84,
650
+ "B\u00e4ckerei Terbuyken": 85,
651
+ "B\u00e4ckerei Werning": 86,
652
+ "B\u00e4ckermeister Haferkamp": 87,
653
+ "CAP-Markt": 88,
654
+ "CBA": 89,
655
+ "CIBTP": 90,
656
+ "CVMaker.uk": 91,
657
+ "Caf De Paris": 92,
658
+ "Cafe & Bar Celona": 93,
659
+ "Cafe del Sol": 94,
660
+ "Caja Rural": 95,
661
+ "Cake Box": 96,
662
+ "Calpam": 97,
663
+ "Calvin Klein": 98,
664
+ "Canteen": 99,
665
+ "Careem": 100,
666
+ "Carhartt": 101,
667
+ "Caribou Coffee": 102,
668
+ "Carter's": 103,
669
+ "Casa del Libro": 104,
670
+ "Cats Protection": 105,
671
+ "Centauro Rent a Car": 106,
672
+ "Center Parcs": 107,
673
+ "Centrakor": 108,
674
+ "Certa": 109,
675
+ "ChargePoint": 110,
676
+ "Checkers": 111,
677
+ "Cinemark": 112,
678
+ "Cineplex": 113,
679
+ "Cinesa": 114,
680
+ "Cineworld": 115,
681
+ "CitizenM": 116,
682
+ "City Gross": 117,
683
+ "City Market": 118,
684
+ "City of Quebec": 119,
685
+ "Clarks": 120,
686
+ "Coin.it": 121,
687
+ "Columbus Cafe": 122,
688
+ "Conrad": 123,
689
+ "Copa Airlines": 124,
690
+ "Coutellerie La Civette": 125,
691
+ "Credit Engine": 126,
692
+ "Crunchyroll": 127,
693
+ "Curzon": 128,
694
+ "DGFIP": 129,
695
+ "DPD": 130,
696
+ "DPMCB": 131,
697
+ "Daiso": 132,
698
+ "Day Today": 133,
699
+ "Dec\u00f2": 134,
700
+ "DeepL": 135,
701
+ "Dehner": 136,
702
+ "Deiters": 137,
703
+ "Delitraiteur": 138,
704
+ "Delmart": 139,
705
+ "Der B\u00e4cker Ruetz": 140,
706
+ "Der Rundfunkbeitrag": 141,
707
+ "Deutsche Bank": 142,
708
+ "Deutsche Post": 143,
709
+ "Deutsche Rentenversicherung": 144,
710
+ "Digital River": 145,
711
+ "Disa": 146,
712
+ "Dishoom": 147,
713
+ "Disney+": 148,
714
+ "Dnata": 149,
715
+ "Dom Lek\u00f3w": 150,
716
+ "Dr Martens": 151,
717
+ "Dussmann": 152,
718
+ "Dyson": 153,
719
+ "E.ON": 154,
720
+ "EE": 155,
721
+ "EOS": 156,
722
+ "EasyPark": 157,
723
+ "Ebl-Naturkost": 158,
724
+ "Edenred": 159,
725
+ "Eharmony": 160,
726
+ "Eko Okna": 161,
727
+ "El Rinc\u00f3n": 162,
728
+ "Elior": 163,
729
+ "Emirates Leisure Retail": 164,
730
+ "Emmerys": 165,
731
+ "EnBW": 166,
732
+ "Enchilada": 167,
733
+ "Engie": 168,
734
+ "Enrique Tomas": 169,
735
+ "Enterprise Rent-A-Car": 170,
736
+ "Ergo": 171,
737
+ "EsclatOil": 172,
738
+ "Etam": 173,
739
+ "Etsan": 174,
740
+ "EuroPark": 175,
741
+ "Everest": 176,
742
+ "F1 Gas": 177,
743
+ "FEBO": 178,
744
+ "FairPrice": 179,
745
+ "Farmacias Benavides": 180,
746
+ "Fastweb": 181,
747
+ "Feu Vert": 182,
748
+ "Fina": 183,
749
+ "Firehouse Subs": 184,
750
+ "Fitinn": 185,
751
+ "FlixBus": 186,
752
+ "Flyeralarm": 187,
753
+ "Footasylum": 188,
754
+ "Four Seasons": 189,
755
+ "Frankonia": 190,
756
+ "Free People": 191,
757
+ "Freie Tankstelle": 192,
758
+ "G La Dalle": 193,
759
+ "GAME": 194,
760
+ "GNC": 195,
761
+ "Galaxias": 196,
762
+ "Galaxus": 197,
763
+ "Galeries Lafayette": 198,
764
+ "Gall & Gall": 199,
765
+ "Gamma": 200,
766
+ "Gedimat": 201,
767
+ "Geldmaat": 202,
768
+ "Generali": 203,
769
+ "GetYourGuide": 204,
770
+ "Getgo": 205,
771
+ "Getr\u00e4nke Hoffmann": 206,
772
+ "GoDaddy": 207,
773
+ "Goldcar": 208,
774
+ "Google Fi": 209,
775
+ "Greens Supermarket": 210,
776
+ "Greffe du Tribunal": 211,
777
+ "Grenke": 212,
778
+ "Groupon": 213,
779
+ "Gucci": 214,
780
+ "Guess": 215,
781
+ "HD Hotels": 216,
782
+ "HSBC": 217,
783
+ "Hamburg Airport": 218,
784
+ "Hannaford": 219,
785
+ "Hans im Gl\u00fcck": 220,
786
+ "Harald Nyborg": 221,
787
+ "Hebe": 222,
788
+ "Heinemann": 223,
789
+ "HelloFresh": 224,
790
+ "Hermes": 225,
791
+ "Herm\u00e8s": 226,
792
+ "Hickey's Pharmacy": 227,
793
+ "Hilti": 228,
794
+ "Hilton Garden Inn": 229,
795
+ "Hilton Garden Inn Hotel": 230,
796
+ "Hiper Centro": 231,
797
+ "Holland & Barrett": 232,
798
+ "Hollister Co.": 233,
799
+ "Hollywood Bowl": 234,
800
+ "Honest Greens": 235,
801
+ "Hostinger": 236,
802
+ "Hotel Barcel\u00f3": 237,
803
+ "Hotel Mama Shelter": 238,
804
+ "Hotel Silken": 239,
805
+ "Hru\u0161ka": 240,
806
+ "Hudson": 241,
807
+ "Hugo Boss": 242,
808
+ "Humana": 243,
809
+ "HungryPanda": 244,
810
+ "Hyper U": 245,
811
+ "IC Cash Services": 246,
812
+ "IHK": 247,
813
+ "IQOS": 248,
814
+ "ISS World": 249,
815
+ "Illy": 250,
816
+ "Ilusiona": 251,
817
+ "In-N-Out Burger": 252,
818
+ "Ingram Micro": 253,
819
+ "Insomnia Coffee": 254,
820
+ "InterContinental": 255,
821
+ "Interparking": 256,
822
+ "Iperal": 257,
823
+ "Italmark": 258,
824
+ "JP \"Putevi Srbije\"": 259,
825
+ "Jack & Jones": 260,
826
+ "Jacques' Wein-Depot": 261,
827
+ "Jadrolinija": 262,
828
+ "Juan Valdez": 263,
829
+ "Jumeirah": 264,
830
+ "Jump Juice Bar": 265,
831
+ "JustAnswer": 266,
832
+ "K-Rauta": 267,
833
+ "KKH": 268,
834
+ "KRAJ": 269,
835
+ "KTC": 270,
836
+ "Kastner & \u00d6hler": 271,
837
+ "Kinepolis": 272,
838
+ "Klarna": 273,
839
+ "Kramb\u00fa\u00f0": 274,
840
+ "Kravag": 275,
841
+ "Kritikos": 276,
842
+ "Kwik Trip": 277,
843
+ "LNER": 278,
844
+ "LPA": 279,
845
+ "La Fourn\u00e9e": 280,
846
+ "La Sirena": 281,
847
+ "La Vie Claire": 282,
848
+ "Lacoste": 283,
849
+ "Lariviere": 284,
850
+ "Lastminute.com": 285,
851
+ "Le Burger": 286,
852
+ "Le Crobag": 287,
853
+ "Le Five": 288,
854
+ "Le Paradis du Fruit": 289,
855
+ "Lebara": 290,
856
+ "Lefties": 291,
857
+ "Legoland": 292,
858
+ "Leon Restaurants": 293,
859
+ "Les D\u00e9lices": 294,
860
+ "Levaduramadre": 295,
861
+ "Lindt": 296,
862
+ "Lloyds Farmacia": 297,
863
+ "Loblaws": 298,
864
+ "Localiza": 299,
865
+ "Lojas Renner": 300,
866
+ "Longchamp": 301,
867
+ "Lotto": 302,
868
+ "Lovisa": 303,
869
+ "Lush Cosmetics": 304,
870
+ "MTA": 305,
871
+ "MVG": 306,
872
+ "Macy's": 307,
873
+ "Maiora": 308,
874
+ "Maison de la Presse": 309,
875
+ "Maisons du Monde": 310,
876
+ "Manchester Airport": 311,
877
+ "Manufactum": 312,
878
+ "March\u00e9 Schweiz": 313,
879
+ "Marco's Pizza": 314,
880
+ "Marien-Apotheke Krailling": 315,
881
+ "Markant": 316,
882
+ "Markant Supermarkt": 317,
883
+ "Market Basket": 318,
884
+ "Massimo Dutti": 319,
885
+ "Medi-Market": 320,
886
+ "Meijer": 321,
887
+ "Meininger Hotels": 322,
888
+ "Mercado Extra": 323,
889
+ "Mercedes-Benz": 324,
890
+ "Merkur": 325,
891
+ "Meu Super": 326,
892
+ "Micromania": 327,
893
+ "Minecraft": 328,
894
+ "Minera": 329,
895
+ "Miscusi": 330,
896
+ "Mladinska": 331,
897
+ "Mon Voisin": 332,
898
+ "Mondadori Store": 333,
899
+ "MoneyGram": 334,
900
+ "Moto Motorway": 335,
901
+ "Mr. Bricolage": 336,
902
+ "Mundorf Tank": 337,
903
+ "M\u00f6belix": 338,
904
+ "M\u0113ness aptieka": 339,
905
+ "NOZ": 340,
906
+ "Nah & Gut": 341,
907
+ "National Rail": 342,
908
+ "Nayax": 343,
909
+ "Netto Denmark": 344,
910
+ "Netto Marken-Discount": 345,
911
+ "Newcastle City Council": 346,
912
+ "Next": 347,
913
+ "Nordsee": 348,
914
+ "Norfa": 349,
915
+ "Notino": 350,
916
+ "N\u00fcrnberger Versicherung": 351,
917
+ "O'Reilly Auto Parts": 352,
918
+ "O'Tacos": 353,
919
+ "OK Mobility": 354,
920
+ "OKay": 355,
921
+ "OVHcloud": 356,
922
+ "Ochsner Sport": 357,
923
+ "Old Wild West": 358,
924
+ "Ole & Steen": 359,
925
+ "Omio": 360,
926
+ "Omniva": 361,
927
+ "Oney": 362,
928
+ "OnlyFans": 363,
929
+ "OpenCor Vending": 364,
930
+ "Osiander": 365,
931
+ "P.F. Chang's": 366,
932
+ "POLOmarket": 367,
933
+ "PRIO": 368,
934
+ "Pad in Portugal": 369,
935
+ "Panet": 370,
936
+ "Panos": 371,
937
+ "Paracelsus Apotheke": 372,
938
+ "Parken": 373,
939
+ "Patagonia": 374,
940
+ "Peter Pane": 375,
941
+ "Pho": 376,
942
+ "Planet Fitness": 377,
943
+ "PlayStation": 378,
944
+ "Point Chaud": 379,
945
+ "Pokawa": 380,
946
+ "Poke House": 381,
947
+ "Polonez": 382,
948
+ "Pomme de Pain": 383,
949
+ "Post Luxembourg": 384,
950
+ "Potraviny": 385,
951
+ "Power.dk": 386,
952
+ "Proxi": 387,
953
+ "Proxim Supermercado": 388,
954
+ "Public Storage": 389,
955
+ "Putka": 390,
956
+ "Qonto": 391,
957
+ "RTA": 392,
958
+ "Radatz": 393,
959
+ "Radstock Co-operative": 394,
960
+ "Ralphs": 395,
961
+ "Real": 396,
962
+ "Riachuelo": 397,
963
+ "Ring": 398,
964
+ "RingGo": 399,
965
+ "Roblox": 400,
966
+ "Rocket Lawyer": 401,
967
+ "Roku": 402,
968
+ "Rontec": 403,
969
+ "Rossopomodoro": 404,
970
+ "Ruch": 405,
971
+ "SFR": 406,
972
+ "STACH": 407,
973
+ "Samsung": 408,
974
+ "SandwiChez": 409,
975
+ "Santagloria": 410,
976
+ "Saturn": 411,
977
+ "Second Cup": 412,
978
+ "Selfridges": 413,
979
+ "Servei Estaci\u00f3": 414,
980
+ "Service NSW": 415,
981
+ "Sigma": 416,
982
+ "Silvan": 417,
983
+ "Six": 418,
984
+ "Slim Chickens": 419,
985
+ "Smart Parking": 420,
986
+ "Smarty Cashback": 421,
987
+ "Smullers": 422,
988
+ "Snappy Snaps": 423,
989
+ "Sokos Hotels": 424,
990
+ "Sonnen Apotheke": 425,
991
+ "Spar University": 426,
992
+ "Spearhead Taxis": 427,
993
+ "Spinneys": 428,
994
+ "Sportler": 429,
995
+ "Sp\u00e4tkauf": 430,
996
+ "Square": 431,
997
+ "Stadt Wien": 432,
998
+ "Stadt-Apotheke": 433,
999
+ "Star Tankstelle": 434,
1000
+ "Stark Deutschland": 435,
1001
+ "Steam": 436,
1002
+ "Stena Line": 437,
1003
+ "Stockmann": 438,
1004
+ "Stripe": 439,
1005
+ "Stroili Oro": 440,
1006
+ "SumUp": 441,
1007
+ "Suma": 442,
1008
+ "Suma Supermercados": 443,
1009
+ "Super Muffato": 444,
1010
+ "Super-Pharm": 445,
1011
+ "SuperFit": 446,
1012
+ "Superbet": 447,
1013
+ "Supermercado Bip Bip": 448,
1014
+ "Swatch": 449,
1015
+ "S\u00f8strene Grene": 450,
1016
+ "T&G": 451,
1017
+ "TGI Friday's": 452,
1018
+ "Tabac Presse": 453,
1019
+ "Taboola": 454,
1020
+ "Tallink": 455,
1021
+ "Tam": 456,
1022
+ "Tank & Rast": 457,
1023
+ "Tank Ono": 458,
1024
+ "Team Autohof": 459,
1025
+ "Teboil": 460,
1026
+ "TeeGschwendner": 461,
1027
+ "Telef\u00f3nica": 462,
1028
+ "Temu": 463,
1029
+ "Tenpin": 464,
1030
+ "Thameslink": 465,
1031
+ "The ASH": 466,
1032
+ "The Alchemist": 467,
1033
+ "The Coffee Bean & Tea Leaf": 468,
1034
+ "The Copenhagen Metro": 469,
1035
+ "The Fresh Market": 470,
1036
+ "The Good Burger": 471,
1037
+ "The North Face": 472,
1038
+ "The Range": 473,
1039
+ "The Social Hub": 474,
1040
+ "The niu": 475,
1041
+ "Thomann": 476,
1042
+ "Three": 477,
1043
+ "Tibits": 478,
1044
+ "TikTok": 479,
1045
+ "Tisak": 480,
1046
+ "Tom Tailor": 481,
1047
+ "Toom": 482,
1048
+ "Top Oil": 483,
1049
+ "Totally Wicked": 484,
1050
+ "Toyota": 485,
1051
+ "Trader Joe's": 486,
1052
+ "TradingView": 487,
1053
+ "Trainline": 488,
1054
+ "TransAct": 489,
1055
+ "Transact.de": 490,
1056
+ "Transdev": 491,
1057
+ "Transgourmet": 492,
1058
+ "Transports Publics Genevois": 493,
1059
+ "Transports Publics Lausannois": 494,
1060
+ "Trenitalia": 495,
1061
+ "Trgovina Krk": 496,
1062
+ "Truffaut": 497,
1063
+ "Turris": 498,
1064
+ "Tu\u0161": 499,
1065
+ "Twins Burger": 500,
1066
+ "Twitch": 501,
1067
+ "U Express": 502,
1068
+ "U-Bahn": 503,
1069
+ "UNICEF": 504,
1070
+ "Under Armour": 505,
1071
+ "Unide": 506,
1072
+ "Unifree": 507,
1073
+ "United Colors of Benetton": 508,
1074
+ "VINCI Autoroutes": 509,
1075
+ "Valvi": 510,
1076
+ "Van der Valk Hotel": 511,
1077
+ "Venchi": 512,
1078
+ "VeniceBeach Fitness": 513,
1079
+ "Veolia": 514,
1080
+ "Viena": 515,
1081
+ "Viena Restaurant": 516,
1082
+ "Vio.com": 517,
1083
+ "Vival": 518,
1084
+ "Vivari Coffee & Bakery": 519,
1085
+ "Vivid Seats": 520,
1086
+ "Voi Scooters": 521,
1087
+ "V\u00ednb\u00fa\u00f0in": 522,
1088
+ "WMF": 523,
1089
+ "Wallapop": 524,
1090
+ "Walther Tankstelle": 525,
1091
+ "Wasabi": 526,
1092
+ "WeWork": 527,
1093
+ "Weekday": 528,
1094
+ "Weezevent": 529,
1095
+ "Weldom": 530,
1096
+ "Wenzel's the Bakers": 531,
1097
+ "Wilma Wunder": 532,
1098
+ "Wilson Parking": 533,
1099
+ "Wise": 534,
1100
+ "Wolt": 535,
1101
+ "Women'secret": 536,
1102
+ "Woodie's": 537,
1103
+ "Woolworth": 538,
1104
+ "XXL Sports & Outdoor": 539,
1105
+ "Yves Rocher": 540,
1106
+ "Zaxby's": 541,
1107
+ "Zoho": 542,
1108
+ "Zolpan": 543,
1109
+ "Zorbas Bakery": 544,
1110
+ "Zurich Insurance": 545,
1111
+ "beObank": 546,
1112
+ "eSmoking World": 547,
1113
+ "unknown": 0,
1114
+ "\u00c5hl\u00e9ns": 548,
1115
+ "\u00d6oB": 549,
1116
+ "\u0395\u03bb\u03af\u03bd": 550
1117
+ },
1118
+ "max_position_embeddings": 512,
1119
+ "model_type": "distilbert",
1120
+ "n_heads": 12,
1121
+ "n_layers": 6,
1122
+ "pad_token_id": 0,
1123
+ "problem_type": "single_label_classification",
1124
+ "qa_dropout": 0.1,
1125
+ "seq_classif_dropout": 0.2,
1126
+ "sinusoidal_pos_embds": false,
1127
+ "tie_weights_": true,
1128
+ "torch_dtype": "float32",
1129
+ "transformers_version": "4.39.3",
1130
+ "vocab_size": 30522
1131
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fff202d1a83a2e95a4cd803b246a244e3c59997728e9325caaadad0ef02353b3
3
+ size 269521308