josejointriple
commited on
Upload DistilBertForSequenceClassificationWithWeights
Browse files- README.md +199 -0
- config.json +571 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "distilbert-base-uncased",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassificationWithWeights"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"id2label": {
|
12 |
+
"0": "El Corte Ingl\u00e9s",
|
13 |
+
"1": "Ernsting's family",
|
14 |
+
"2": "Etihad Airways",
|
15 |
+
"3": "Circle K",
|
16 |
+
"4": "Exxon",
|
17 |
+
"5": "Easy Apotheke",
|
18 |
+
"6": "Espresso House",
|
19 |
+
"7": "Fabryka Formy",
|
20 |
+
"8": "Feu Vert",
|
21 |
+
"9": "Firehouse Subs",
|
22 |
+
"10": "Fitness Park",
|
23 |
+
"11": "Five Below",
|
24 |
+
"12": "Five Guys",
|
25 |
+
"13": "Fix My Phone",
|
26 |
+
"14": "Flying Tiger",
|
27 |
+
"15": "Foot Locker",
|
28 |
+
"16": "Giunti al Punto",
|
29 |
+
"17": "Google Cloud",
|
30 |
+
"18": "Guitar Center",
|
31 |
+
"19": "Half Price Books",
|
32 |
+
"20": "Harris Teeter",
|
33 |
+
"21": "Hellenic Bank",
|
34 |
+
"22": "Help Net",
|
35 |
+
"23": "Heron Foods",
|
36 |
+
"24": "1 Minute",
|
37 |
+
"25": "100 Montaditos",
|
38 |
+
"26": "Taco Bell",
|
39 |
+
"27": "123 Reg",
|
40 |
+
"28": "Maxi Zoo",
|
41 |
+
"29": "DATS 24",
|
42 |
+
"30": "Pret A Manger",
|
43 |
+
"31": "El Pollo Loco",
|
44 |
+
"32": "Burger King",
|
45 |
+
"33": "APCOA Parking",
|
46 |
+
"34": "Costa Coffee",
|
47 |
+
"35": "Albert Heijn",
|
48 |
+
"36": "Abu Auf",
|
49 |
+
"37": "Ibis Budget",
|
50 |
+
"38": "Ibis Styles",
|
51 |
+
"39": "Air Serbia",
|
52 |
+
"40": "Al Maha Petroleum",
|
53 |
+
"41": "Aleman Experto",
|
54 |
+
"42": "Amazon Prime",
|
55 |
+
"43": "Andy's Pizza Moldova",
|
56 |
+
"44": "Angel Hill Food Co.",
|
57 |
+
"45": "Alpha Taxis",
|
58 |
+
"46": "Amazon Music",
|
59 |
+
"47": "B+B Parkhaus",
|
60 |
+
"48": "Bafra Kebab",
|
61 |
+
"49": "Bamboo Blonde",
|
62 |
+
"50": "Banana Republic",
|
63 |
+
"51": "Bargain Booze",
|
64 |
+
"52": "Barra Chalaca",
|
65 |
+
"53": "BC Liquor Stores",
|
66 |
+
"54": "Best Buy",
|
67 |
+
"55": "Best Western",
|
68 |
+
"56": "Bijou Brigitte",
|
69 |
+
"57": "Bio Company",
|
70 |
+
"58": "Boka Food",
|
71 |
+
"59": "Boux Avenue",
|
72 |
+
"60": "Brewers Fayre",
|
73 |
+
"61": "Brico OK",
|
74 |
+
"62": "Buffalo Wild Wings",
|
75 |
+
"63": "Panda Express",
|
76 |
+
"64": "Panera Bread",
|
77 |
+
"65": "Papa John's Pizza",
|
78 |
+
"66": "NOW TV",
|
79 |
+
"67": "Just Eat",
|
80 |
+
"68": "Phillips 66",
|
81 |
+
"69": "Piekarnia Hert",
|
82 |
+
"70": "Pingo Doce",
|
83 |
+
"71": "Piraeus Bank",
|
84 |
+
"72": "Pizza Express",
|
85 |
+
"73": "Pizza Hut",
|
86 |
+
"74": "PKP Intercity",
|
87 |
+
"75": "Pollo Campero",
|
88 |
+
"76": "Swiss Post",
|
89 |
+
"77": "Pottery Barn",
|
90 |
+
"78": "Premier Inn",
|
91 |
+
"79": "Proxy Delhaize",
|
92 |
+
"80": "Pets Corner",
|
93 |
+
"81": "Poczta Polska",
|
94 |
+
"82": "Qatar Airways",
|
95 |
+
"83": "Rail Europe",
|
96 |
+
"84": "REMA 1000",
|
97 |
+
"85": "River Island",
|
98 |
+
"86": "Ross Stores",
|
99 |
+
"87": "Royal Mail",
|
100 |
+
"88": "Shake Shack",
|
101 |
+
"89": "Boot Barn",
|
102 |
+
"90": "B\u00e4ckerei Fuchs",
|
103 |
+
"91": "Calvin Klein",
|
104 |
+
"92": "Cannon Home",
|
105 |
+
"93": "Carrefour City",
|
106 |
+
"94": "Carrefour Express",
|
107 |
+
"95": "Carrefour Market",
|
108 |
+
"96": "Cash Converters Shopping",
|
109 |
+
"97": "North Data",
|
110 |
+
"98": "Coffee Fellows",
|
111 |
+
"99": "Coles Express",
|
112 |
+
"100": "CVS Pharmacy",
|
113 |
+
"101": "LC Waikiki",
|
114 |
+
"102": "Leroy Merlin",
|
115 |
+
"103": "LinkedIn Ads",
|
116 |
+
"104": "Microsoft Store",
|
117 |
+
"105": "Southern Co-op",
|
118 |
+
"106": "Wizz Air",
|
119 |
+
"107": "Cumberland Farms",
|
120 |
+
"108": "Credit Engine",
|
121 |
+
"109": "Dairy Queen",
|
122 |
+
"110": "Das Futterhaus",
|
123 |
+
"111": "Der Brotmacher",
|
124 |
+
"112": "Deutsche Post",
|
125 |
+
"113": "Dollar General",
|
126 |
+
"114": "Domino's Pizza",
|
127 |
+
"115": "Dutch Bros",
|
128 |
+
"116": "Hilton Garden Inn Hotel",
|
129 |
+
"117": "Holiday Inn",
|
130 |
+
"118": "Home Bargains",
|
131 |
+
"119": "Hotel Silken",
|
132 |
+
"120": "Hyatt Regency",
|
133 |
+
"121": "Host Europe",
|
134 |
+
"122": "IC Cash",
|
135 |
+
"123": "ICA Kvantum",
|
136 |
+
"124": "ICA Supermarket",
|
137 |
+
"125": "iN's Mercato",
|
138 |
+
"126": "Inter Cars SA",
|
139 |
+
"127": "Irish Rail",
|
140 |
+
"128": "Jack In The Box",
|
141 |
+
"129": "Jack Wolfskin",
|
142 |
+
"130": "JD Sports",
|
143 |
+
"131": "Jean Coutu",
|
144 |
+
"132": "Jean Louis David",
|
145 |
+
"133": "K Kiosk",
|
146 |
+
"134": "Kall Kwik",
|
147 |
+
"135": "KFC",
|
148 |
+
"136": "KK Super Mart",
|
149 |
+
"137": "Uber Eats",
|
150 |
+
"138": "Krispy Kreme",
|
151 |
+
"139": "Kwik Trip",
|
152 |
+
"140": "La Despensa",
|
153 |
+
"141": "La Poste",
|
154 |
+
"142": "LAZ Parking",
|
155 |
+
"143": "Little Caesars",
|
156 |
+
"144": "Lojas Renner",
|
157 |
+
"145": "Market Basket",
|
158 |
+
"146": "MDP Supplies",
|
159 |
+
"147": "Michael Kors",
|
160 |
+
"148": "Microsoft Ads",
|
161 |
+
"149": "Min K\u00f8bmand",
|
162 |
+
"150": "Mix Markt",
|
163 |
+
"151": "Shoppers Drug Mart",
|
164 |
+
"152": "Smyths Toys",
|
165 |
+
"153": "Sonic Drive-In",
|
166 |
+
"154": "Sports Direct",
|
167 |
+
"155": "Sue Ryder",
|
168 |
+
"156": "Sunglass Hut",
|
169 |
+
"157": "Super U",
|
170 |
+
"158": "SV Schweiz",
|
171 |
+
"159": "Fitness First",
|
172 |
+
"160": "Free Mobile",
|
173 |
+
"161": "Free People",
|
174 |
+
"162": "Google Fi",
|
175 |
+
"163": "Half Price",
|
176 |
+
"164": "Super Zoo",
|
177 |
+
"165": "Planet Fitness",
|
178 |
+
"166": "A3D Chile",
|
179 |
+
"167": "Aer Lingus",
|
180 |
+
"168": "Air China",
|
181 |
+
"169": "Tim Hortons",
|
182 |
+
"170": "Black Eye Coffee",
|
183 |
+
"171": "Smoothie King",
|
184 |
+
"172": "Plaza Vea",
|
185 |
+
"173": "Pollo Tropical",
|
186 |
+
"174": "Public Storage",
|
187 |
+
"175": "Rip Curl",
|
188 |
+
"176": "Blizzard Entertainment",
|
189 |
+
"177": "Chuck E. Cheese",
|
190 |
+
"178": "Cinema City",
|
191 |
+
"179": "Coles Supermarket",
|
192 |
+
"180": "Cotton On",
|
193 |
+
"181": "Cotton Traders",
|
194 |
+
"182": "Just Gym",
|
195 |
+
"183": "MAX Burgers",
|
196 |
+
"184": "Motel One",
|
197 |
+
"185": "One Stop",
|
198 |
+
"186": "Turkish Airlines",
|
199 |
+
"187": "Disney Store",
|
200 |
+
"188": "Hush Puppies",
|
201 |
+
"189": "Kimia Farma Apotek",
|
202 |
+
"190": "Kamera Express",
|
203 |
+
"191": "Lager 157",
|
204 |
+
"192": "REWE",
|
205 |
+
"193": "Mountain Warehouse",
|
206 |
+
"194": "Shell",
|
207 |
+
"195": "Sport Clips",
|
208 |
+
"196": "Flying J",
|
209 |
+
"197": "Advance Auto Parts",
|
210 |
+
"198": "Air France",
|
211 |
+
"199": "Ann Summers",
|
212 |
+
"200": "Blaze Pizza",
|
213 |
+
"201": "Service NSW",
|
214 |
+
"202": "New Look",
|
215 |
+
"203": "Trader Joe's",
|
216 |
+
"204": "Drogeria Natura",
|
217 |
+
"205": "ITA Airways",
|
218 |
+
"206": "Moc Jakosc Zysk",
|
219 |
+
"207": "NP Markt",
|
220 |
+
"208": "GOL Linhas A\u00e9reas",
|
221 |
+
"209": "Gomla Market",
|
222 |
+
"210": "Alco Market",
|
223 |
+
"211": "Adagio Teas",
|
224 |
+
"212": "Paddy Power",
|
225 |
+
"213": "Denn's Biomarkt",
|
226 |
+
"214": "Call a Pizza",
|
227 |
+
"215": "Duane Reade",
|
228 |
+
"216": "Joe & The Juice",
|
229 |
+
"217": "Le Crobag",
|
230 |
+
"218": "Maison 123",
|
231 |
+
"219": "Smart Parking",
|
232 |
+
"220": "Supermercados La Torre",
|
233 |
+
"221": "Vivid Seats",
|
234 |
+
"222": "Cash App",
|
235 |
+
"223": "Delikatesy Centrum",
|
236 |
+
"224": "Dunnes Stores",
|
237 |
+
"225": "La Comer",
|
238 |
+
"226": "McDonald's",
|
239 |
+
"227": "Bali Tees",
|
240 |
+
"228": "Sky X",
|
241 |
+
"229": "Skyline Taxis",
|
242 |
+
"230": "Stacja Moya",
|
243 |
+
"231": "Tabak Polska",
|
244 |
+
"232": "Table Table",
|
245 |
+
"233": "Tally Weijl",
|
246 |
+
"234": "Texas Roadhouse",
|
247 |
+
"235": "The Entertainer",
|
248 |
+
"236": "The Fragrance Shop",
|
249 |
+
"237": "The Fresh Market",
|
250 |
+
"238": "The Home Depot",
|
251 |
+
"239": "The North Face",
|
252 |
+
"240": "The UPS Store",
|
253 |
+
"241": "TJ Maxx",
|
254 |
+
"242": "Toby Carvery",
|
255 |
+
"243": "Top Gift",
|
256 |
+
"244": "Topps Tiles",
|
257 |
+
"245": "Tops Pizza",
|
258 |
+
"246": "The Body Shop",
|
259 |
+
"247": "Urban Outfitters",
|
260 |
+
"248": "V and B",
|
261 |
+
"249": "Victoria's Secret",
|
262 |
+
"250": "Virgin Media",
|
263 |
+
"251": "Vision Express",
|
264 |
+
"252": "Village Hotels",
|
265 |
+
"253": "Well Pharmacy",
|
266 |
+
"254": "Whitbread Inns",
|
267 |
+
"255": "WMM Hotel Betriebs",
|
268 |
+
"256": "Yves Rocher",
|
269 |
+
"257": "Zara Home",
|
270 |
+
"258": "Ziko Apteka",
|
271 |
+
"259": "Mercedes me Store",
|
272 |
+
"260": "New Yorker",
|
273 |
+
"261": "New Balance",
|
274 |
+
"262": "Nur Hier",
|
275 |
+
"263": "Ochsner Sport",
|
276 |
+
"264": "Old Wild West",
|
277 |
+
"265": "OpenCor Vending",
|
278 |
+
"266": "Whole Foods Market",
|
279 |
+
"267": "Wine Rack",
|
280 |
+
"268": "Office Depot",
|
281 |
+
"269": "Pague Menos",
|
282 |
+
"270": "White Spot"
|
283 |
+
},
|
284 |
+
"initializer_range": 0.02,
|
285 |
+
"label2id": {
|
286 |
+
"1 Minute": 24,
|
287 |
+
"100 Montaditos": 25,
|
288 |
+
"123 Reg": 27,
|
289 |
+
"A3D Chile": 166,
|
290 |
+
"APCOA Parking": 33,
|
291 |
+
"Abu Auf": 36,
|
292 |
+
"Adagio Teas": 211,
|
293 |
+
"Advance Auto Parts": 197,
|
294 |
+
"Aer Lingus": 167,
|
295 |
+
"Air China": 168,
|
296 |
+
"Air France": 198,
|
297 |
+
"Air Serbia": 39,
|
298 |
+
"Al Maha Petroleum": 40,
|
299 |
+
"Albert Heijn": 35,
|
300 |
+
"Alco Market": 210,
|
301 |
+
"Aleman Experto": 41,
|
302 |
+
"Alpha Taxis": 45,
|
303 |
+
"Amazon Music": 46,
|
304 |
+
"Amazon Prime": 42,
|
305 |
+
"Andy's Pizza Moldova": 43,
|
306 |
+
"Angel Hill Food Co.": 44,
|
307 |
+
"Ann Summers": 199,
|
308 |
+
"B+B Parkhaus": 47,
|
309 |
+
"BC Liquor Stores": 53,
|
310 |
+
"Bafra Kebab": 48,
|
311 |
+
"Bali Tees": 227,
|
312 |
+
"Bamboo Blonde": 49,
|
313 |
+
"Banana Republic": 50,
|
314 |
+
"Bargain Booze": 51,
|
315 |
+
"Barra Chalaca": 52,
|
316 |
+
"Best Buy": 54,
|
317 |
+
"Best Western": 55,
|
318 |
+
"Bijou Brigitte": 56,
|
319 |
+
"Bio Company": 57,
|
320 |
+
"Black Eye Coffee": 170,
|
321 |
+
"Blaze Pizza": 200,
|
322 |
+
"Blizzard Entertainment": 176,
|
323 |
+
"Boka Food": 58,
|
324 |
+
"Boot Barn": 89,
|
325 |
+
"Boux Avenue": 59,
|
326 |
+
"Brewers Fayre": 60,
|
327 |
+
"Brico OK": 61,
|
328 |
+
"Buffalo Wild Wings": 62,
|
329 |
+
"Burger King": 32,
|
330 |
+
"B\u00e4ckerei Fuchs": 90,
|
331 |
+
"CVS Pharmacy": 100,
|
332 |
+
"Call a Pizza": 214,
|
333 |
+
"Calvin Klein": 91,
|
334 |
+
"Cannon Home": 92,
|
335 |
+
"Carrefour City": 93,
|
336 |
+
"Carrefour Express": 94,
|
337 |
+
"Carrefour Market": 95,
|
338 |
+
"Cash App": 222,
|
339 |
+
"Cash Converters Shopping": 96,
|
340 |
+
"Chuck E. Cheese": 177,
|
341 |
+
"Cinema City": 178,
|
342 |
+
"Circle K": 3,
|
343 |
+
"Coffee Fellows": 98,
|
344 |
+
"Coles Express": 99,
|
345 |
+
"Coles Supermarket": 179,
|
346 |
+
"Costa Coffee": 34,
|
347 |
+
"Cotton On": 180,
|
348 |
+
"Cotton Traders": 181,
|
349 |
+
"Credit Engine": 108,
|
350 |
+
"Cumberland Farms": 107,
|
351 |
+
"DATS 24": 29,
|
352 |
+
"Dairy Queen": 109,
|
353 |
+
"Das Futterhaus": 110,
|
354 |
+
"Delikatesy Centrum": 223,
|
355 |
+
"Denn's Biomarkt": 213,
|
356 |
+
"Der Brotmacher": 111,
|
357 |
+
"Deutsche Post": 112,
|
358 |
+
"Disney Store": 187,
|
359 |
+
"Dollar General": 113,
|
360 |
+
"Domino's Pizza": 114,
|
361 |
+
"Drogeria Natura": 204,
|
362 |
+
"Duane Reade": 215,
|
363 |
+
"Dunnes Stores": 224,
|
364 |
+
"Dutch Bros": 115,
|
365 |
+
"Easy Apotheke": 5,
|
366 |
+
"El Corte Ingl\u00e9s": 0,
|
367 |
+
"El Pollo Loco": 31,
|
368 |
+
"Ernsting's family": 1,
|
369 |
+
"Espresso House": 6,
|
370 |
+
"Etihad Airways": 2,
|
371 |
+
"Exxon": 4,
|
372 |
+
"Fabryka Formy": 7,
|
373 |
+
"Feu Vert": 8,
|
374 |
+
"Firehouse Subs": 9,
|
375 |
+
"Fitness First": 159,
|
376 |
+
"Fitness Park": 10,
|
377 |
+
"Five Below": 11,
|
378 |
+
"Five Guys": 12,
|
379 |
+
"Fix My Phone": 13,
|
380 |
+
"Flying J": 196,
|
381 |
+
"Flying Tiger": 14,
|
382 |
+
"Foot Locker": 15,
|
383 |
+
"Free Mobile": 160,
|
384 |
+
"Free People": 161,
|
385 |
+
"GOL Linhas A\u00e9reas": 208,
|
386 |
+
"Giunti al Punto": 16,
|
387 |
+
"Gomla Market": 209,
|
388 |
+
"Google Cloud": 17,
|
389 |
+
"Google Fi": 162,
|
390 |
+
"Guitar Center": 18,
|
391 |
+
"Half Price": 163,
|
392 |
+
"Half Price Books": 19,
|
393 |
+
"Harris Teeter": 20,
|
394 |
+
"Hellenic Bank": 21,
|
395 |
+
"Help Net": 22,
|
396 |
+
"Heron Foods": 23,
|
397 |
+
"Hilton Garden Inn Hotel": 116,
|
398 |
+
"Holiday Inn": 117,
|
399 |
+
"Home Bargains": 118,
|
400 |
+
"Host Europe": 121,
|
401 |
+
"Hotel Silken": 119,
|
402 |
+
"Hush Puppies": 188,
|
403 |
+
"Hyatt Regency": 120,
|
404 |
+
"IC Cash": 122,
|
405 |
+
"ICA Kvantum": 123,
|
406 |
+
"ICA Supermarket": 124,
|
407 |
+
"ITA Airways": 205,
|
408 |
+
"Ibis Budget": 37,
|
409 |
+
"Ibis Styles": 38,
|
410 |
+
"Inter Cars SA": 126,
|
411 |
+
"Irish Rail": 127,
|
412 |
+
"JD Sports": 130,
|
413 |
+
"Jack In The Box": 128,
|
414 |
+
"Jack Wolfskin": 129,
|
415 |
+
"Jean Coutu": 131,
|
416 |
+
"Jean Louis David": 132,
|
417 |
+
"Joe & The Juice": 216,
|
418 |
+
"Just Eat": 67,
|
419 |
+
"Just Gym": 182,
|
420 |
+
"K Kiosk": 133,
|
421 |
+
"KFC": 135,
|
422 |
+
"KK Super Mart": 136,
|
423 |
+
"Kall Kwik": 134,
|
424 |
+
"Kamera Express": 190,
|
425 |
+
"Kimia Farma Apotek": 189,
|
426 |
+
"Krispy Kreme": 138,
|
427 |
+
"Kwik Trip": 139,
|
428 |
+
"LAZ Parking": 142,
|
429 |
+
"LC Waikiki": 101,
|
430 |
+
"La Comer": 225,
|
431 |
+
"La Despensa": 140,
|
432 |
+
"La Poste": 141,
|
433 |
+
"Lager 157": 191,
|
434 |
+
"Le Crobag": 217,
|
435 |
+
"Leroy Merlin": 102,
|
436 |
+
"LinkedIn Ads": 103,
|
437 |
+
"Little Caesars": 143,
|
438 |
+
"Lojas Renner": 144,
|
439 |
+
"MAX Burgers": 183,
|
440 |
+
"MDP Supplies": 146,
|
441 |
+
"Maison 123": 218,
|
442 |
+
"Market Basket": 145,
|
443 |
+
"Maxi Zoo": 28,
|
444 |
+
"McDonald's": 226,
|
445 |
+
"Mercedes me Store": 259,
|
446 |
+
"Michael Kors": 147,
|
447 |
+
"Microsoft Ads": 148,
|
448 |
+
"Microsoft Store": 104,
|
449 |
+
"Min K\u00f8bmand": 149,
|
450 |
+
"Mix Markt": 150,
|
451 |
+
"Moc Jakosc Zysk": 206,
|
452 |
+
"Motel One": 184,
|
453 |
+
"Mountain Warehouse": 193,
|
454 |
+
"NOW TV": 66,
|
455 |
+
"NP Markt": 207,
|
456 |
+
"New Balance": 261,
|
457 |
+
"New Look": 202,
|
458 |
+
"New Yorker": 260,
|
459 |
+
"North Data": 97,
|
460 |
+
"Nur Hier": 262,
|
461 |
+
"Ochsner Sport": 263,
|
462 |
+
"Office Depot": 268,
|
463 |
+
"Old Wild West": 264,
|
464 |
+
"One Stop": 185,
|
465 |
+
"OpenCor Vending": 265,
|
466 |
+
"PKP Intercity": 74,
|
467 |
+
"Paddy Power": 212,
|
468 |
+
"Pague Menos": 269,
|
469 |
+
"Panda Express": 63,
|
470 |
+
"Panera Bread": 64,
|
471 |
+
"Papa John's Pizza": 65,
|
472 |
+
"Pets Corner": 80,
|
473 |
+
"Phillips 66": 68,
|
474 |
+
"Piekarnia Hert": 69,
|
475 |
+
"Pingo Doce": 70,
|
476 |
+
"Piraeus Bank": 71,
|
477 |
+
"Pizza Express": 72,
|
478 |
+
"Pizza Hut": 73,
|
479 |
+
"Planet Fitness": 165,
|
480 |
+
"Plaza Vea": 172,
|
481 |
+
"Poczta Polska": 81,
|
482 |
+
"Pollo Campero": 75,
|
483 |
+
"Pollo Tropical": 173,
|
484 |
+
"Pottery Barn": 77,
|
485 |
+
"Premier Inn": 78,
|
486 |
+
"Pret A Manger": 30,
|
487 |
+
"Proxy Delhaize": 79,
|
488 |
+
"Public Storage": 174,
|
489 |
+
"Qatar Airways": 82,
|
490 |
+
"REMA 1000": 84,
|
491 |
+
"REWE": 192,
|
492 |
+
"Rail Europe": 83,
|
493 |
+
"Rip Curl": 175,
|
494 |
+
"River Island": 85,
|
495 |
+
"Ross Stores": 86,
|
496 |
+
"Royal Mail": 87,
|
497 |
+
"SV Schweiz": 158,
|
498 |
+
"Service NSW": 201,
|
499 |
+
"Shake Shack": 88,
|
500 |
+
"Shell": 194,
|
501 |
+
"Shoppers Drug Mart": 151,
|
502 |
+
"Sky X": 228,
|
503 |
+
"Skyline Taxis": 229,
|
504 |
+
"Smart Parking": 219,
|
505 |
+
"Smoothie King": 171,
|
506 |
+
"Smyths Toys": 152,
|
507 |
+
"Sonic Drive-In": 153,
|
508 |
+
"Southern Co-op": 105,
|
509 |
+
"Sport Clips": 195,
|
510 |
+
"Sports Direct": 154,
|
511 |
+
"Stacja Moya": 230,
|
512 |
+
"Sue Ryder": 155,
|
513 |
+
"Sunglass Hut": 156,
|
514 |
+
"Super U": 157,
|
515 |
+
"Super Zoo": 164,
|
516 |
+
"Supermercados La Torre": 220,
|
517 |
+
"Swiss Post": 76,
|
518 |
+
"TJ Maxx": 241,
|
519 |
+
"Tabak Polska": 231,
|
520 |
+
"Table Table": 232,
|
521 |
+
"Taco Bell": 26,
|
522 |
+
"Tally Weijl": 233,
|
523 |
+
"Texas Roadhouse": 234,
|
524 |
+
"The Body Shop": 246,
|
525 |
+
"The Entertainer": 235,
|
526 |
+
"The Fragrance Shop": 236,
|
527 |
+
"The Fresh Market": 237,
|
528 |
+
"The Home Depot": 238,
|
529 |
+
"The North Face": 239,
|
530 |
+
"The UPS Store": 240,
|
531 |
+
"Tim Hortons": 169,
|
532 |
+
"Toby Carvery": 242,
|
533 |
+
"Top Gift": 243,
|
534 |
+
"Topps Tiles": 244,
|
535 |
+
"Tops Pizza": 245,
|
536 |
+
"Trader Joe's": 203,
|
537 |
+
"Turkish Airlines": 186,
|
538 |
+
"Uber Eats": 137,
|
539 |
+
"Urban Outfitters": 247,
|
540 |
+
"V and B": 248,
|
541 |
+
"Victoria's Secret": 249,
|
542 |
+
"Village Hotels": 252,
|
543 |
+
"Virgin Media": 250,
|
544 |
+
"Vision Express": 251,
|
545 |
+
"Vivid Seats": 221,
|
546 |
+
"WMM Hotel Betriebs": 255,
|
547 |
+
"Well Pharmacy": 253,
|
548 |
+
"Whitbread Inns": 254,
|
549 |
+
"White Spot": 270,
|
550 |
+
"Whole Foods Market": 266,
|
551 |
+
"Wine Rack": 267,
|
552 |
+
"Wizz Air": 106,
|
553 |
+
"Yves Rocher": 256,
|
554 |
+
"Zara Home": 257,
|
555 |
+
"Ziko Apteka": 258,
|
556 |
+
"iN's Mercato": 125
|
557 |
+
},
|
558 |
+
"max_position_embeddings": 512,
|
559 |
+
"model_type": "distilbert",
|
560 |
+
"n_heads": 12,
|
561 |
+
"n_layers": 6,
|
562 |
+
"pad_token_id": 0,
|
563 |
+
"problem_type": "single_label_classification",
|
564 |
+
"qa_dropout": 0.1,
|
565 |
+
"seq_classif_dropout": 0.2,
|
566 |
+
"sinusoidal_pos_embds": false,
|
567 |
+
"tie_weights_": true,
|
568 |
+
"torch_dtype": "float32",
|
569 |
+
"transformers_version": "4.39.3",
|
570 |
+
"vocab_size": 30522
|
571 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6022dd1181fc639e4b3d28ca75e2589e948d42843f2f16850463b02dfdf4e2ea
|
3 |
+
size 268660028
|