josejointriple commited on
Commit
2401975
·
verified ·
1 Parent(s): f562ed9

Upload DistilBertForSequenceClassificationWithWeights

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +571 -0
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,571 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForSequenceClassificationWithWeights"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "id2label": {
12
+ "0": "El Corte Ingl\u00e9s",
13
+ "1": "Ernsting's family",
14
+ "2": "Etihad Airways",
15
+ "3": "Circle K",
16
+ "4": "Exxon",
17
+ "5": "Easy Apotheke",
18
+ "6": "Espresso House",
19
+ "7": "Fabryka Formy",
20
+ "8": "Feu Vert",
21
+ "9": "Firehouse Subs",
22
+ "10": "Fitness Park",
23
+ "11": "Five Below",
24
+ "12": "Five Guys",
25
+ "13": "Fix My Phone",
26
+ "14": "Flying Tiger",
27
+ "15": "Foot Locker",
28
+ "16": "Giunti al Punto",
29
+ "17": "Google Cloud",
30
+ "18": "Guitar Center",
31
+ "19": "Half Price Books",
32
+ "20": "Harris Teeter",
33
+ "21": "Hellenic Bank",
34
+ "22": "Help Net",
35
+ "23": "Heron Foods",
36
+ "24": "1 Minute",
37
+ "25": "100 Montaditos",
38
+ "26": "Taco Bell",
39
+ "27": "123 Reg",
40
+ "28": "Maxi Zoo",
41
+ "29": "DATS 24",
42
+ "30": "Pret A Manger",
43
+ "31": "El Pollo Loco",
44
+ "32": "Burger King",
45
+ "33": "APCOA Parking",
46
+ "34": "Costa Coffee",
47
+ "35": "Albert Heijn",
48
+ "36": "Abu Auf",
49
+ "37": "Ibis Budget",
50
+ "38": "Ibis Styles",
51
+ "39": "Air Serbia",
52
+ "40": "Al Maha Petroleum",
53
+ "41": "Aleman Experto",
54
+ "42": "Amazon Prime",
55
+ "43": "Andy's Pizza Moldova",
56
+ "44": "Angel Hill Food Co.",
57
+ "45": "Alpha Taxis",
58
+ "46": "Amazon Music",
59
+ "47": "B+B Parkhaus",
60
+ "48": "Bafra Kebab",
61
+ "49": "Bamboo Blonde",
62
+ "50": "Banana Republic",
63
+ "51": "Bargain Booze",
64
+ "52": "Barra Chalaca",
65
+ "53": "BC Liquor Stores",
66
+ "54": "Best Buy",
67
+ "55": "Best Western",
68
+ "56": "Bijou Brigitte",
69
+ "57": "Bio Company",
70
+ "58": "Boka Food",
71
+ "59": "Boux Avenue",
72
+ "60": "Brewers Fayre",
73
+ "61": "Brico OK",
74
+ "62": "Buffalo Wild Wings",
75
+ "63": "Panda Express",
76
+ "64": "Panera Bread",
77
+ "65": "Papa John's Pizza",
78
+ "66": "NOW TV",
79
+ "67": "Just Eat",
80
+ "68": "Phillips 66",
81
+ "69": "Piekarnia Hert",
82
+ "70": "Pingo Doce",
83
+ "71": "Piraeus Bank",
84
+ "72": "Pizza Express",
85
+ "73": "Pizza Hut",
86
+ "74": "PKP Intercity",
87
+ "75": "Pollo Campero",
88
+ "76": "Swiss Post",
89
+ "77": "Pottery Barn",
90
+ "78": "Premier Inn",
91
+ "79": "Proxy Delhaize",
92
+ "80": "Pets Corner",
93
+ "81": "Poczta Polska",
94
+ "82": "Qatar Airways",
95
+ "83": "Rail Europe",
96
+ "84": "REMA 1000",
97
+ "85": "River Island",
98
+ "86": "Ross Stores",
99
+ "87": "Royal Mail",
100
+ "88": "Shake Shack",
101
+ "89": "Boot Barn",
102
+ "90": "B\u00e4ckerei Fuchs",
103
+ "91": "Calvin Klein",
104
+ "92": "Cannon Home",
105
+ "93": "Carrefour City",
106
+ "94": "Carrefour Express",
107
+ "95": "Carrefour Market",
108
+ "96": "Cash Converters Shopping",
109
+ "97": "North Data",
110
+ "98": "Coffee Fellows",
111
+ "99": "Coles Express",
112
+ "100": "CVS Pharmacy",
113
+ "101": "LC Waikiki",
114
+ "102": "Leroy Merlin",
115
+ "103": "LinkedIn Ads",
116
+ "104": "Microsoft Store",
117
+ "105": "Southern Co-op",
118
+ "106": "Wizz Air",
119
+ "107": "Cumberland Farms",
120
+ "108": "Credit Engine",
121
+ "109": "Dairy Queen",
122
+ "110": "Das Futterhaus",
123
+ "111": "Der Brotmacher",
124
+ "112": "Deutsche Post",
125
+ "113": "Dollar General",
126
+ "114": "Domino's Pizza",
127
+ "115": "Dutch Bros",
128
+ "116": "Hilton Garden Inn Hotel",
129
+ "117": "Holiday Inn",
130
+ "118": "Home Bargains",
131
+ "119": "Hotel Silken",
132
+ "120": "Hyatt Regency",
133
+ "121": "Host Europe",
134
+ "122": "IC Cash",
135
+ "123": "ICA Kvantum",
136
+ "124": "ICA Supermarket",
137
+ "125": "iN's Mercato",
138
+ "126": "Inter Cars SA",
139
+ "127": "Irish Rail",
140
+ "128": "Jack In The Box",
141
+ "129": "Jack Wolfskin",
142
+ "130": "JD Sports",
143
+ "131": "Jean Coutu",
144
+ "132": "Jean Louis David",
145
+ "133": "K Kiosk",
146
+ "134": "Kall Kwik",
147
+ "135": "KFC",
148
+ "136": "KK Super Mart",
149
+ "137": "Uber Eats",
150
+ "138": "Krispy Kreme",
151
+ "139": "Kwik Trip",
152
+ "140": "La Despensa",
153
+ "141": "La Poste",
154
+ "142": "LAZ Parking",
155
+ "143": "Little Caesars",
156
+ "144": "Lojas Renner",
157
+ "145": "Market Basket",
158
+ "146": "MDP Supplies",
159
+ "147": "Michael Kors",
160
+ "148": "Microsoft Ads",
161
+ "149": "Min K\u00f8bmand",
162
+ "150": "Mix Markt",
163
+ "151": "Shoppers Drug Mart",
164
+ "152": "Smyths Toys",
165
+ "153": "Sonic Drive-In",
166
+ "154": "Sports Direct",
167
+ "155": "Sue Ryder",
168
+ "156": "Sunglass Hut",
169
+ "157": "Super U",
170
+ "158": "SV Schweiz",
171
+ "159": "Fitness First",
172
+ "160": "Free Mobile",
173
+ "161": "Free People",
174
+ "162": "Google Fi",
175
+ "163": "Half Price",
176
+ "164": "Super Zoo",
177
+ "165": "Planet Fitness",
178
+ "166": "A3D Chile",
179
+ "167": "Aer Lingus",
180
+ "168": "Air China",
181
+ "169": "Tim Hortons",
182
+ "170": "Black Eye Coffee",
183
+ "171": "Smoothie King",
184
+ "172": "Plaza Vea",
185
+ "173": "Pollo Tropical",
186
+ "174": "Public Storage",
187
+ "175": "Rip Curl",
188
+ "176": "Blizzard Entertainment",
189
+ "177": "Chuck E. Cheese",
190
+ "178": "Cinema City",
191
+ "179": "Coles Supermarket",
192
+ "180": "Cotton On",
193
+ "181": "Cotton Traders",
194
+ "182": "Just Gym",
195
+ "183": "MAX Burgers",
196
+ "184": "Motel One",
197
+ "185": "One Stop",
198
+ "186": "Turkish Airlines",
199
+ "187": "Disney Store",
200
+ "188": "Hush Puppies",
201
+ "189": "Kimia Farma Apotek",
202
+ "190": "Kamera Express",
203
+ "191": "Lager 157",
204
+ "192": "REWE",
205
+ "193": "Mountain Warehouse",
206
+ "194": "Shell",
207
+ "195": "Sport Clips",
208
+ "196": "Flying J",
209
+ "197": "Advance Auto Parts",
210
+ "198": "Air France",
211
+ "199": "Ann Summers",
212
+ "200": "Blaze Pizza",
213
+ "201": "Service NSW",
214
+ "202": "New Look",
215
+ "203": "Trader Joe's",
216
+ "204": "Drogeria Natura",
217
+ "205": "ITA Airways",
218
+ "206": "Moc Jakosc Zysk",
219
+ "207": "NP Markt",
220
+ "208": "GOL Linhas A\u00e9reas",
221
+ "209": "Gomla Market",
222
+ "210": "Alco Market",
223
+ "211": "Adagio Teas",
224
+ "212": "Paddy Power",
225
+ "213": "Denn's Biomarkt",
226
+ "214": "Call a Pizza",
227
+ "215": "Duane Reade",
228
+ "216": "Joe & The Juice",
229
+ "217": "Le Crobag",
230
+ "218": "Maison 123",
231
+ "219": "Smart Parking",
232
+ "220": "Supermercados La Torre",
233
+ "221": "Vivid Seats",
234
+ "222": "Cash App",
235
+ "223": "Delikatesy Centrum",
236
+ "224": "Dunnes Stores",
237
+ "225": "La Comer",
238
+ "226": "McDonald's",
239
+ "227": "Bali Tees",
240
+ "228": "Sky X",
241
+ "229": "Skyline Taxis",
242
+ "230": "Stacja Moya",
243
+ "231": "Tabak Polska",
244
+ "232": "Table Table",
245
+ "233": "Tally Weijl",
246
+ "234": "Texas Roadhouse",
247
+ "235": "The Entertainer",
248
+ "236": "The Fragrance Shop",
249
+ "237": "The Fresh Market",
250
+ "238": "The Home Depot",
251
+ "239": "The North Face",
252
+ "240": "The UPS Store",
253
+ "241": "TJ Maxx",
254
+ "242": "Toby Carvery",
255
+ "243": "Top Gift",
256
+ "244": "Topps Tiles",
257
+ "245": "Tops Pizza",
258
+ "246": "The Body Shop",
259
+ "247": "Urban Outfitters",
260
+ "248": "V and B",
261
+ "249": "Victoria's Secret",
262
+ "250": "Virgin Media",
263
+ "251": "Vision Express",
264
+ "252": "Village Hotels",
265
+ "253": "Well Pharmacy",
266
+ "254": "Whitbread Inns",
267
+ "255": "WMM Hotel Betriebs",
268
+ "256": "Yves Rocher",
269
+ "257": "Zara Home",
270
+ "258": "Ziko Apteka",
271
+ "259": "Mercedes me Store",
272
+ "260": "New Yorker",
273
+ "261": "New Balance",
274
+ "262": "Nur Hier",
275
+ "263": "Ochsner Sport",
276
+ "264": "Old Wild West",
277
+ "265": "OpenCor Vending",
278
+ "266": "Whole Foods Market",
279
+ "267": "Wine Rack",
280
+ "268": "Office Depot",
281
+ "269": "Pague Menos",
282
+ "270": "White Spot"
283
+ },
284
+ "initializer_range": 0.02,
285
+ "label2id": {
286
+ "1 Minute": 24,
287
+ "100 Montaditos": 25,
288
+ "123 Reg": 27,
289
+ "A3D Chile": 166,
290
+ "APCOA Parking": 33,
291
+ "Abu Auf": 36,
292
+ "Adagio Teas": 211,
293
+ "Advance Auto Parts": 197,
294
+ "Aer Lingus": 167,
295
+ "Air China": 168,
296
+ "Air France": 198,
297
+ "Air Serbia": 39,
298
+ "Al Maha Petroleum": 40,
299
+ "Albert Heijn": 35,
300
+ "Alco Market": 210,
301
+ "Aleman Experto": 41,
302
+ "Alpha Taxis": 45,
303
+ "Amazon Music": 46,
304
+ "Amazon Prime": 42,
305
+ "Andy's Pizza Moldova": 43,
306
+ "Angel Hill Food Co.": 44,
307
+ "Ann Summers": 199,
308
+ "B+B Parkhaus": 47,
309
+ "BC Liquor Stores": 53,
310
+ "Bafra Kebab": 48,
311
+ "Bali Tees": 227,
312
+ "Bamboo Blonde": 49,
313
+ "Banana Republic": 50,
314
+ "Bargain Booze": 51,
315
+ "Barra Chalaca": 52,
316
+ "Best Buy": 54,
317
+ "Best Western": 55,
318
+ "Bijou Brigitte": 56,
319
+ "Bio Company": 57,
320
+ "Black Eye Coffee": 170,
321
+ "Blaze Pizza": 200,
322
+ "Blizzard Entertainment": 176,
323
+ "Boka Food": 58,
324
+ "Boot Barn": 89,
325
+ "Boux Avenue": 59,
326
+ "Brewers Fayre": 60,
327
+ "Brico OK": 61,
328
+ "Buffalo Wild Wings": 62,
329
+ "Burger King": 32,
330
+ "B\u00e4ckerei Fuchs": 90,
331
+ "CVS Pharmacy": 100,
332
+ "Call a Pizza": 214,
333
+ "Calvin Klein": 91,
334
+ "Cannon Home": 92,
335
+ "Carrefour City": 93,
336
+ "Carrefour Express": 94,
337
+ "Carrefour Market": 95,
338
+ "Cash App": 222,
339
+ "Cash Converters Shopping": 96,
340
+ "Chuck E. Cheese": 177,
341
+ "Cinema City": 178,
342
+ "Circle K": 3,
343
+ "Coffee Fellows": 98,
344
+ "Coles Express": 99,
345
+ "Coles Supermarket": 179,
346
+ "Costa Coffee": 34,
347
+ "Cotton On": 180,
348
+ "Cotton Traders": 181,
349
+ "Credit Engine": 108,
350
+ "Cumberland Farms": 107,
351
+ "DATS 24": 29,
352
+ "Dairy Queen": 109,
353
+ "Das Futterhaus": 110,
354
+ "Delikatesy Centrum": 223,
355
+ "Denn's Biomarkt": 213,
356
+ "Der Brotmacher": 111,
357
+ "Deutsche Post": 112,
358
+ "Disney Store": 187,
359
+ "Dollar General": 113,
360
+ "Domino's Pizza": 114,
361
+ "Drogeria Natura": 204,
362
+ "Duane Reade": 215,
363
+ "Dunnes Stores": 224,
364
+ "Dutch Bros": 115,
365
+ "Easy Apotheke": 5,
366
+ "El Corte Ingl\u00e9s": 0,
367
+ "El Pollo Loco": 31,
368
+ "Ernsting's family": 1,
369
+ "Espresso House": 6,
370
+ "Etihad Airways": 2,
371
+ "Exxon": 4,
372
+ "Fabryka Formy": 7,
373
+ "Feu Vert": 8,
374
+ "Firehouse Subs": 9,
375
+ "Fitness First": 159,
376
+ "Fitness Park": 10,
377
+ "Five Below": 11,
378
+ "Five Guys": 12,
379
+ "Fix My Phone": 13,
380
+ "Flying J": 196,
381
+ "Flying Tiger": 14,
382
+ "Foot Locker": 15,
383
+ "Free Mobile": 160,
384
+ "Free People": 161,
385
+ "GOL Linhas A\u00e9reas": 208,
386
+ "Giunti al Punto": 16,
387
+ "Gomla Market": 209,
388
+ "Google Cloud": 17,
389
+ "Google Fi": 162,
390
+ "Guitar Center": 18,
391
+ "Half Price": 163,
392
+ "Half Price Books": 19,
393
+ "Harris Teeter": 20,
394
+ "Hellenic Bank": 21,
395
+ "Help Net": 22,
396
+ "Heron Foods": 23,
397
+ "Hilton Garden Inn Hotel": 116,
398
+ "Holiday Inn": 117,
399
+ "Home Bargains": 118,
400
+ "Host Europe": 121,
401
+ "Hotel Silken": 119,
402
+ "Hush Puppies": 188,
403
+ "Hyatt Regency": 120,
404
+ "IC Cash": 122,
405
+ "ICA Kvantum": 123,
406
+ "ICA Supermarket": 124,
407
+ "ITA Airways": 205,
408
+ "Ibis Budget": 37,
409
+ "Ibis Styles": 38,
410
+ "Inter Cars SA": 126,
411
+ "Irish Rail": 127,
412
+ "JD Sports": 130,
413
+ "Jack In The Box": 128,
414
+ "Jack Wolfskin": 129,
415
+ "Jean Coutu": 131,
416
+ "Jean Louis David": 132,
417
+ "Joe & The Juice": 216,
418
+ "Just Eat": 67,
419
+ "Just Gym": 182,
420
+ "K Kiosk": 133,
421
+ "KFC": 135,
422
+ "KK Super Mart": 136,
423
+ "Kall Kwik": 134,
424
+ "Kamera Express": 190,
425
+ "Kimia Farma Apotek": 189,
426
+ "Krispy Kreme": 138,
427
+ "Kwik Trip": 139,
428
+ "LAZ Parking": 142,
429
+ "LC Waikiki": 101,
430
+ "La Comer": 225,
431
+ "La Despensa": 140,
432
+ "La Poste": 141,
433
+ "Lager 157": 191,
434
+ "Le Crobag": 217,
435
+ "Leroy Merlin": 102,
436
+ "LinkedIn Ads": 103,
437
+ "Little Caesars": 143,
438
+ "Lojas Renner": 144,
439
+ "MAX Burgers": 183,
440
+ "MDP Supplies": 146,
441
+ "Maison 123": 218,
442
+ "Market Basket": 145,
443
+ "Maxi Zoo": 28,
444
+ "McDonald's": 226,
445
+ "Mercedes me Store": 259,
446
+ "Michael Kors": 147,
447
+ "Microsoft Ads": 148,
448
+ "Microsoft Store": 104,
449
+ "Min K\u00f8bmand": 149,
450
+ "Mix Markt": 150,
451
+ "Moc Jakosc Zysk": 206,
452
+ "Motel One": 184,
453
+ "Mountain Warehouse": 193,
454
+ "NOW TV": 66,
455
+ "NP Markt": 207,
456
+ "New Balance": 261,
457
+ "New Look": 202,
458
+ "New Yorker": 260,
459
+ "North Data": 97,
460
+ "Nur Hier": 262,
461
+ "Ochsner Sport": 263,
462
+ "Office Depot": 268,
463
+ "Old Wild West": 264,
464
+ "One Stop": 185,
465
+ "OpenCor Vending": 265,
466
+ "PKP Intercity": 74,
467
+ "Paddy Power": 212,
468
+ "Pague Menos": 269,
469
+ "Panda Express": 63,
470
+ "Panera Bread": 64,
471
+ "Papa John's Pizza": 65,
472
+ "Pets Corner": 80,
473
+ "Phillips 66": 68,
474
+ "Piekarnia Hert": 69,
475
+ "Pingo Doce": 70,
476
+ "Piraeus Bank": 71,
477
+ "Pizza Express": 72,
478
+ "Pizza Hut": 73,
479
+ "Planet Fitness": 165,
480
+ "Plaza Vea": 172,
481
+ "Poczta Polska": 81,
482
+ "Pollo Campero": 75,
483
+ "Pollo Tropical": 173,
484
+ "Pottery Barn": 77,
485
+ "Premier Inn": 78,
486
+ "Pret A Manger": 30,
487
+ "Proxy Delhaize": 79,
488
+ "Public Storage": 174,
489
+ "Qatar Airways": 82,
490
+ "REMA 1000": 84,
491
+ "REWE": 192,
492
+ "Rail Europe": 83,
493
+ "Rip Curl": 175,
494
+ "River Island": 85,
495
+ "Ross Stores": 86,
496
+ "Royal Mail": 87,
497
+ "SV Schweiz": 158,
498
+ "Service NSW": 201,
499
+ "Shake Shack": 88,
500
+ "Shell": 194,
501
+ "Shoppers Drug Mart": 151,
502
+ "Sky X": 228,
503
+ "Skyline Taxis": 229,
504
+ "Smart Parking": 219,
505
+ "Smoothie King": 171,
506
+ "Smyths Toys": 152,
507
+ "Sonic Drive-In": 153,
508
+ "Southern Co-op": 105,
509
+ "Sport Clips": 195,
510
+ "Sports Direct": 154,
511
+ "Stacja Moya": 230,
512
+ "Sue Ryder": 155,
513
+ "Sunglass Hut": 156,
514
+ "Super U": 157,
515
+ "Super Zoo": 164,
516
+ "Supermercados La Torre": 220,
517
+ "Swiss Post": 76,
518
+ "TJ Maxx": 241,
519
+ "Tabak Polska": 231,
520
+ "Table Table": 232,
521
+ "Taco Bell": 26,
522
+ "Tally Weijl": 233,
523
+ "Texas Roadhouse": 234,
524
+ "The Body Shop": 246,
525
+ "The Entertainer": 235,
526
+ "The Fragrance Shop": 236,
527
+ "The Fresh Market": 237,
528
+ "The Home Depot": 238,
529
+ "The North Face": 239,
530
+ "The UPS Store": 240,
531
+ "Tim Hortons": 169,
532
+ "Toby Carvery": 242,
533
+ "Top Gift": 243,
534
+ "Topps Tiles": 244,
535
+ "Tops Pizza": 245,
536
+ "Trader Joe's": 203,
537
+ "Turkish Airlines": 186,
538
+ "Uber Eats": 137,
539
+ "Urban Outfitters": 247,
540
+ "V and B": 248,
541
+ "Victoria's Secret": 249,
542
+ "Village Hotels": 252,
543
+ "Virgin Media": 250,
544
+ "Vision Express": 251,
545
+ "Vivid Seats": 221,
546
+ "WMM Hotel Betriebs": 255,
547
+ "Well Pharmacy": 253,
548
+ "Whitbread Inns": 254,
549
+ "White Spot": 270,
550
+ "Whole Foods Market": 266,
551
+ "Wine Rack": 267,
552
+ "Wizz Air": 106,
553
+ "Yves Rocher": 256,
554
+ "Zara Home": 257,
555
+ "Ziko Apteka": 258,
556
+ "iN's Mercato": 125
557
+ },
558
+ "max_position_embeddings": 512,
559
+ "model_type": "distilbert",
560
+ "n_heads": 12,
561
+ "n_layers": 6,
562
+ "pad_token_id": 0,
563
+ "problem_type": "single_label_classification",
564
+ "qa_dropout": 0.1,
565
+ "seq_classif_dropout": 0.2,
566
+ "sinusoidal_pos_embds": false,
567
+ "tie_weights_": true,
568
+ "torch_dtype": "float32",
569
+ "transformers_version": "4.39.3",
570
+ "vocab_size": 30522
571
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6022dd1181fc639e4b3d28ca75e2589e948d42843f2f16850463b02dfdf4e2ea
3
+ size 268660028