File size: 7,191 Bytes
0874b59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
language: fr
datasets:
- common_voice
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: Voxpopuli Wav2Vec2 French by Jonatas Grosman
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice fr
      type: common_voice
      args: fr
    metrics:
       - name: Test WER
         type: wer
         value: 19.80
       - name: Test CER
         type: cer
         value: 6.89
---

# Wav2vec2-Large-FR-Voxpopuli-French

Fine-tuned [facebook/wav2vec2-large-fr-voxpopuli](https://huggingface.co/facebook/wav2vec2-large-fr-voxpopuli) on French using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.

The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint

## Usage

The model can be used directly (without a language model) as follows:

```python
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-large-fr-voxpopuli-french"
SAMPLES = 10

test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = batch["sentence"].upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)

for i, predicted_sentence in enumerate(predicted_sentences):
    print("-" * 100)
    print("Reference:", test_dataset[i]["sentence"])
    print("Prediction:", predicted_sentence)
```

| Reference  | Prediction |
| ------------- | ------------- |
| "CE DERNIER A ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE." | CE DERNIER ÉVOLÉ TOUT AU LONG DE L'HISTOIRE ROMAINE |
| CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ACHÉMÉNIDE ET SEPT DES SASSANIDES. | CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNESTIE ACHÉMÉNIDE ET SEPT DES SASENNIDES |
| "J'AI DIT QUE LES ACTEURS DE BOIS AVAIENT, SELON MOI, BEAUCOUP D'AVANTAGES SUR LES AUTRES." | JAI DIT QUE LES ACTEURS DE BOIS AVAIENT SELON MOI BEAUCOUP DAVANTAGE SUR LES AUTRES |
| LES PAYS-BAS ONT REMPORTÉ TOUTES LES ÉDITIONS. | LE PAYS-BAS ON REMPORTÉ TOUTES LES ÉDITIONS |
| IL Y A MAINTENANT UNE GARE ROUTIÈRE. | IL A MAINTENANT OUSATE DE TIRN |
| HUIT | HUIT |
| DANS L’ATTENTE DU LENDEMAIN, ILS NE POUVAIENT SE DÉFENDRE D’UNE VIVE ÉMOTION | DANS L'ATTENTE DU LENDEMAIN IL NE POUVAIT SE DÉFENDRE DUNE VIVE ÉMOTION |
| LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES. | LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES |
| ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES. | ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES |
| ZÉRO | ZÉRO ZZ |

## Evaluation

The model can be evaluated as follows on the French (fr) test data of Common Voice.

```python
import torch
import re
import librosa
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-large-fr-voxpopuli-french"
DEVICE = "cuda"

CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
                   "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
                   "{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
                   "、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
                   "『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]

test_dataset = load_dataset("common_voice", LANG_ID, split="test")

wer = load_metric("wer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/wer.py
cer = load_metric("cer.py") # https://github.com/jonatasgrosman/wav2vec2-sprint/blob/main/cer.py

chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"

processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
    batch["speech"] = speech_array
    batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]

print(f"WER: {wer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references, chunk_size=1000) * 100}")
```

**Test Result**:

In the table below I report the Word Error Rate (WER) and the Character Error Rate (CER) of the model. I ran the evaluation script described above on other models as well (on 2021-05-16). Note that the table below may show different results from those already reported, this may have been caused due to some specificity of the other evaluation scripts used.

| Model | WER | CER |
| ------------- | ------------- | ------------- |
| jonatasgrosman/wav2vec2-large-xlsr-53-french | **16.86%** | **5.65%** |
| Ilyes/wav2vec2-large-xlsr-53-french | 19.67% | 6.70% |
| jonatasgrosman/wav2vec2-large-fr-voxpopuli-french | 19.80% | 6.89% |
| Nhut/wav2vec2-large-xlsr-french | 24.09% | 8.42% |
| facebook/wav2vec2-large-xlsr-53-french | 25.45% | 10.35% |
| MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-French | 28.22% | 9.70% |
| Ilyes/wav2vec2-large-xlsr-53-french_punctuation | 29.80% | 11.79% |
| facebook/wav2vec2-base-10k-voxpopuli-ft-fr | 61.06% | 33.31% |