File size: 6,198 Bytes
765fb8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
#!/usr/bin/env python3
from datasets import load_dataset, load_metric, Audio, Dataset
from transformers import pipeline, AutoFeatureExtractor, AutoTokenizer, AutoConfig, AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
import re
import torch
import argparse
from typing import Dict
def log_results(result: Dataset, args: Dict[str, str]):
""" DO NOT CHANGE. This function computes and logs the result metrics. """
log_outputs = args.log_outputs
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
# load metric
wer = load_metric("wer")
cer = load_metric("cer")
# compute metrics
wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
# print & log results
result_str = (
f"WER: {wer_result}\n"
f"CER: {cer_result}"
)
print(result_str)
with open(f"{dataset_id}_eval_results.txt", "w") as f:
f.write(result_str)
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
pred_file = f"log_{dataset_id}_predictions.txt"
target_file = f"log_{dataset_id}_targets.txt"
with open(pred_file, "w") as p, open(target_file, "w") as t:
# mapping function to write output
def write_to_file(batch, i):
p.write(f"{i}" + "\n")
p.write(batch["prediction"] + "\n")
t.write(f"{i}" + "\n")
t.write(batch["target"] + "\n")
result.map(write_to_file, with_indices=True)
def normalize_text(text: str, invalid_chars_regex: str, to_lower: bool) -> str:
""" DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
text = text.lower() if to_lower else text.upper()
text = re.sub(invalid_chars_regex, " ", text)
text = re.sub("\s+", " ", text).strip()
return text
def main(args):
# load dataset
dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
if args.greedy:
processor = Wav2Vec2Processor.from_pretrained(args.model_id)
decoder = None
else:
processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
decoder = processor.decoder
feature_extractor = processor.feature_extractor
tokenizer = processor.tokenizer
# resample audio
dataset = dataset.cast_column("audio", Audio(sampling_rate=feature_extractor.sampling_rate))
# load eval pipeline
if args.device is None:
args.device = 0 if torch.cuda.is_available() else -1
config = AutoConfig.from_pretrained(args.model_id)
model = AutoModelForCTC.from_pretrained(args.model_id)
#asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device)
asr = pipeline("automatic-speech-recognition", config=config, model=model, tokenizer=tokenizer,
feature_extractor=feature_extractor, decoder=decoder, device=args.device)
# build normalizer config
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
tokens = [x for x in tokenizer.convert_ids_to_tokens(range(0, tokenizer.vocab_size))]
special_tokens = [
tokenizer.pad_token, tokenizer.word_delimiter_token,
tokenizer.unk_token, tokenizer.bos_token,
tokenizer.eos_token,
]
non_special_tokens = [x for x in tokens if x not in special_tokens]
invalid_chars_regex = f"[^\s{re.escape(''.join(set(non_special_tokens)))}]"
normalize_to_lower = False
for token in non_special_tokens:
if token.isalpha() and token.islower():
normalize_to_lower = True
break
# map function to decode audio
def map_to_pred(batch, args=args, asr=asr, invalid_chars_regex=invalid_chars_regex, normalize_to_lower=normalize_to_lower):
prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
batch["prediction"] = prediction["text"]
batch["target"] = normalize_text(batch["sentence"], invalid_chars_regex, normalize_to_lower)
return batch
# run inference on all examples
result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
# filtering out empty targets
result = result.filter(lambda example: example["target"] != "")
# compute and log_results
# do not change function below
log_results(result, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument(
"--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
)
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to None. For long audio files a good value would be 5.0 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to None. For long audio files a good value would be 1.0 seconds."
)
parser.add_argument(
"--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--greedy", action='store_true', help="If defined, the LM will be ignored during inference."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
args = parser.parse_args()
main(args)
|