--- language: - es license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer - cer base_model: openai/whisper-large-v2 model-index: - name: Whisper Large Spanish results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 es type: mozilla-foundation/common_voice_11_0 config: es split: test args: es metrics: - type: wer value: 4.673613637544826 name: WER - type: cer value: 1.5573247819517182 name: CER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs es_419 type: google/fleurs config: es_419 split: test args: es_419 metrics: - type: wer value: 5.396216546072705 name: WER - type: cer value: 3.450427960057061 name: CER --- # Whisper Large Spanish This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on Spanish using the train split of [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0). ## Usage ```python from transformers import pipeline transcriber = pipeline( "automatic-speech-recognition", model="jonatasgrosman/whisper-large-es-cv11" ) transcriber.model.config.forced_decoder_ids = ( transcriber.tokenizer.get_decoder_prompt_ids( language="es", task="transcribe" ) ) transcription = transcriber("path/to/my_audio.wav") ``` ## Evaluation I've performed the evaluation of the model using the test split of two datasets, the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) (same dataset used for the fine-tuning) and the [Fleurs](https://huggingface.co/datasets/google/fleurs) (dataset not seen during the fine-tuning). As Whisper can transcribe casing and punctuation, I've performed the model evaluation in 2 different scenarios, one using the raw text and the other using the normalized text (lowercase + removal of punctuations). Additionally, for the Fleurs dataset, I've evaluated the model in a scenario where there are no transcriptions of numerical values since the way these values are described in this dataset is different from how they are described in the dataset used in fine-tuning (Common Voice), so it is expected that this difference in the way of describing numerical values will affect the performance of the model for this type of transcription in Fleurs. ### Common Voice 11 | | CER | WER | | --- | --- | --- | | [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) | 2.43 | 8.85 | | [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) + text normalization | 1.56 | 4.67 | | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 3.71 | 12.34 | | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 2.45 | 6.30 | ### Fleurs | | CER | WER | | --- | --- | --- | | [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) | 3.06 | 9.11 | | [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) + text normalization | 3.45 | 5.40 | | [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) + keep only non-numeric samples | 1.83 | 7.57 | | [jonatasgrosman/whisper-large-es-cv11](https://huggingface.co/jonatasgrosman/whisper-large-es-cv11) + text normalization + keep only non-numeric samples | 2.36 | 4.14 | | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 2.30 | 8.50 | | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 2.76 | 4.79 | | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + keep only non-numeric samples | 1.93 | 7.33 | | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization + keep only non-numeric samples | 2.50 | 4.28 |