File size: 4,252 Bytes
2ac91b5
 
 
 
 
 
 
 
 
 
 
 
c30ebee
2ac91b5
 
 
 
 
c30ebee
2ac91b5
 
 
 
 
 
 
c30ebee
 
 
 
2ac91b5
c30ebee
2ac91b5
 
c30ebee
2ac91b5
 
 
 
 
 
 
c30ebee
2ac91b5
c30ebee
 
2ac91b5
c30ebee
2ac91b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
language:
- fr
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- cer
base_model: openai/whisper-large-v2
model-index:
- name: Whisper Large French
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 fr
      type: mozilla-foundation/common_voice_11_0
      config: fr
      split: test
      args: fr
    metrics:
    - type: wer
      value: 9.086701085988961
      name: WER
    - type: cer
      value: 3.327312134958326
      name: CER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: google/fleurs fr_fr
      type: google/fleurs
      config: fr_fr
      split: test
      args: fr_fr
    metrics:
    - type: wer
      value: 8.6863088842391
      name: WER
    - type: cer
      value: 5.089870653452041
      name: CER
---

# Whisper Large French

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on French using the train split of [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).

## Usage

```python

from transformers import pipeline

transcriber = pipeline(
  "automatic-speech-recognition", 
  model="jonatasgrosman/whisper-large-fr-cv11"
)

transcriber.model.config.forced_decoder_ids = (
  transcriber.tokenizer.get_decoder_prompt_ids(
    language="fr", 
    task="transcribe"
  )
)

transcription = transcriber("path/to/my_audio.wav")

```

## Evaluation

I've performed the evaluation of the model using the test split of two datasets, the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) (same dataset used for the fine-tuning) and the [Fleurs](https://huggingface.co/datasets/google/fleurs) (dataset not seen during the fine-tuning). As Whisper can transcribe casing and punctuation, I've performed the model evaluation in 2 different scenarios, one using the raw text and the other using the normalized text (lowercase + removal of punctuations). Additionally, for the Fleurs dataset, I've evaluated the model in a scenario where there are no transcriptions of numerical values since the way these values are described in this dataset is different from how they are described in the dataset used in fine-tuning (Common Voice), so it is expected that this difference in the way of describing numerical values will affect the performance of the model for this type of transcription in Fleurs.

### Common Voice 11

| | CER | WER |
| --- | --- | --- |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) | 4.31 | 13.66 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + text normalization | 3.33 | 9.09 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 7.17 | 18.99 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 5.74 | 12.82 |


### Fleurs

| | CER | WER |
| --- | --- | --- |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) | 4.96 | 14.24 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + text normalization | 5.09 | 8.69 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + keep only non-numeric samples | 3.14 | 12.10 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + text normalization + keep only non-numeric samples | 3.60 | 6.94 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 3.55 | 12.81 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 3.76 | 7.59 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + keep only non-numeric samples | 3.12 | 11.24 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization + keep only non-numeric samples | 3.65 | 6.99 |