File size: 4,252 Bytes
2ac91b5 c30ebee 2ac91b5 c30ebee 2ac91b5 c30ebee 2ac91b5 c30ebee 2ac91b5 c30ebee 2ac91b5 c30ebee 2ac91b5 c30ebee 2ac91b5 c30ebee 2ac91b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
language:
- fr
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- cer
base_model: openai/whisper-large-v2
model-index:
- name: Whisper Large French
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 fr
type: mozilla-foundation/common_voice_11_0
config: fr
split: test
args: fr
metrics:
- type: wer
value: 9.086701085988961
name: WER
- type: cer
value: 3.327312134958326
name: CER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs fr_fr
type: google/fleurs
config: fr_fr
split: test
args: fr_fr
metrics:
- type: wer
value: 8.6863088842391
name: WER
- type: cer
value: 5.089870653452041
name: CER
---
# Whisper Large French
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on French using the train split of [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).
## Usage
```python
from transformers import pipeline
transcriber = pipeline(
"automatic-speech-recognition",
model="jonatasgrosman/whisper-large-fr-cv11"
)
transcriber.model.config.forced_decoder_ids = (
transcriber.tokenizer.get_decoder_prompt_ids(
language="fr",
task="transcribe"
)
)
transcription = transcriber("path/to/my_audio.wav")
```
## Evaluation
I've performed the evaluation of the model using the test split of two datasets, the [Common Voice 11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) (same dataset used for the fine-tuning) and the [Fleurs](https://huggingface.co/datasets/google/fleurs) (dataset not seen during the fine-tuning). As Whisper can transcribe casing and punctuation, I've performed the model evaluation in 2 different scenarios, one using the raw text and the other using the normalized text (lowercase + removal of punctuations). Additionally, for the Fleurs dataset, I've evaluated the model in a scenario where there are no transcriptions of numerical values since the way these values are described in this dataset is different from how they are described in the dataset used in fine-tuning (Common Voice), so it is expected that this difference in the way of describing numerical values will affect the performance of the model for this type of transcription in Fleurs.
### Common Voice 11
| | CER | WER |
| --- | --- | --- |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) | 4.31 | 13.66 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + text normalization | 3.33 | 9.09 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 7.17 | 18.99 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 5.74 | 12.82 |
### Fleurs
| | CER | WER |
| --- | --- | --- |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) | 4.96 | 14.24 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + text normalization | 5.09 | 8.69 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + keep only non-numeric samples | 3.14 | 12.10 |
| [jonatasgrosman/whisper-large-fr-cv11](https://huggingface.co/jonatasgrosman/whisper-large-fr-cv11) + text normalization + keep only non-numeric samples | 3.60 | 6.94 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 3.55 | 12.81 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization | 3.76 | 7.59 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + keep only non-numeric samples | 3.12 | 11.24 |
| [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) + text normalization + keep only non-numeric samples | 3.65 | 6.99 |
|