--- library_name: peft base_model: declare-lab/flan-alpaca-base datasets: - knowrohit07/know_sql license: mit language: - en pipeline_tag: text2text-generation tags: - sql - query - database --- ## Model Details ### Model Description This model is based on the declare-lab/flan-alpaca-base model finetuned with knowrohit07/know_sql dataset. - **Developed by:** Jonathan Jordan - **Model type:** FLAN Alpaca - **Language(s) (NLP):** English - **License:** [More Information Needed] - **Finetuned from model:** declare-lab/flan-alpaca-base ## Uses The model generates a string of SQL query based on a question and MySQL table schema. You can modify the table schema to match MySQL table schema if you are using different type of SQL database (e.g. PostgreSQL, Oracle, etc). The generated SQL query can be run perfectly on the python SQL connection (e.g. psycopg2, mysql_connector, etc). #### Limitations 1. The question MUST be in english 2. Keep in mind about the difference in data type naming between MySQL and the other SQL databases 3. The output always starts with SELECT *, you can't choose which columns to retrieve. 4. Aggregation function is not supported ### Input Example ```python """Question: what is What was the result of the election in the Florida 18 district?\nTable: table_1341598_10 (result VARCHAR, district VARCHAR)\nSQL: """ ``` ### Output Example ```python """SELECT * FROM table_1341598_10 WHERE district = "Florida 18"""" ``` ### How to use Load model ```python from peft import get_peft_config, get_peft_model, TaskType from peft import PeftConfig, PeftModel from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_id = "jonathanjordan21/flan-alpaca-base-finetuned-lora-knowSQL" config = PeftConfig.from_pretrained(model_id) model_ = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, return_dict=True) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model_, model_id) model = get_peft_model(model,config) ``` Model inference ```python question = "server of user id 11 with status active and server id 10" table = "table_name_77 ( user id INTEGER, status VARCHAR, server id INTEGER )" test = f"""Question: {question}\nTable: {table}\nSQL: """ p = tokenizer(test, return_tensors='pt') device = "cuda" if torch.cuda.is_available() else "cpu" out = model.to(device).generate(**p.to(device),max_new_tokens=50) print("SQL Query :", tokenizer.batch_decode(out,skip_special_tokens=True)[0]) ``` ## Performance ### Speed Performance The model inference takes about 2-3 seconds to run with Google Colab Free Tier CPU ### Downstream Use [optional] ### Framework versions - PEFT 0.6.2