--- library_name: peft base_model: declare-lab/flan-alpaca-base license: mit language: - en pipeline_tag: text2text-generation tags: - sql - query - database --- ## Model Details ### Model Description This model is based on the declare-lab/flan-alpaca-base model finetuned with wikisql dataset. - **Developed by:** Jonathan Jordan - **Model type:** FLAN Alpaca - **Language(s) (NLP):** English - **License:** [More Information Needed] - **Finetuned from model:** declare-lab/flan-alpaca-base ## Uses The model generates a string of SQL query based on a question and table columns. **The generated query always uses "table" as the table name**. Feel free to change the table name in the generated query to match your actual SQL table. The generated SQL query can be run perfectly on the python SQL connection (e.g. psycopg2, mysql_connector, etc). #### Limitations 1. The question MUST be in english 2. Keep in mind about the difference in data type naming between MySQL and the other SQL databases 3. Simple SQL Aggregation functions (SUM, AVG, COUNT, MIN, MAX) are supported 4. Advanced SQL Aggregation which involves GROUP BY, ORDER BY, HAVING, etc are highly not recommended 5. Table JOIN is not supported ### Input Example ```python """Question: what is What was the result of the election in the Florida 18 district?\nTable: table_1341598_10 (result VARCHAR, district VARCHAR)\nSQL: """ ``` ### Output Example ```python """SELECT * FROM table WHERE district = "Florida 18"""" ``` ### How to use Load model ```python from peft import get_peft_config, get_peft_model, TaskType from peft import PeftConfig, PeftModel from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_id = "jonathanjordan21/flan-alpaca-base-finetuned-lora-wikisql" config = PeftConfig.from_pretrained(model_id) model_ = AutoModelForSeq2SeqLM.from_pretrained(config.base_model_name_or_path, return_dict=True) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(model_, model_id) ``` Model inference ```python question = "server of user id 11 with status active and server id 10" table = "table_name_77 ( user id INTEGER, status VARCHAR, server id INTEGER )" test = f"""Question: {question}\nTable: {table}\nSQL: """ p = tokenizer(test, return_tensors='pt') device = "cuda" if torch.cuda.is_available() else "cpu" out = model.to(device).generate(**p.to(device),max_new_tokens=50) print("SQL Query :", tokenizer.batch_decode(out,skip_special_tokens=True)[0]) ``` ## Performance ### Speed Performance The model inference takes about 2-3 seconds to run in Google Colab Free Tier CPU ### Framework versions - PEFT 0.6.2