jondister commited on
Commit
5c6a1c7
1 Parent(s): eab09bb

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.68 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2c69eede583ca9211cec79f20ba7361ac1e433f67a7531d24a25e049874319e
3
+ size 108059
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc38aa9a940>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fc38aa9d2a0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1675528486961382745,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW6ytP1ob079kway/vOHFvqIEsr41q5Q/hcYUPVgifjrQpNS/pgNkP/Wvmz8yJh+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]]",
60
+ "desired_goal": "[[ 1.3568224e+00 -1.6492722e+00 -1.3496518e+00]\n [-3.8648784e-01 -3.4769160e-01 1.1614748e+00]\n [ 3.6322135e-02 9.6944487e-04 -1.6612797e+00]\n [ 8.9068067e-01 1.2163073e+00 -6.2167656e-01]]",
61
+ "observation": "[[ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArdMbPVjAtT0NRoA+L/6tPfSicz2ohLs9yHFyPVkYmz0kwxg8peu3ve9gIrzo04w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.03804367 0.08874577 0.25053445]\n [ 0.08495747 0.05948158 0.09156162]\n [ 0.05919054 0.07573003 0.00932387]\n [-0.08980493 -0.00991081 0.27505422]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMhzPZ0A977+UhpRSlIwBbJRLMowBdJRHQKdOHezlcQl1fZQoaAZoCWgPQwgPJzCd1m3qv5SGlFKUaBVLMmgWR0CnTeMImgJ1dX2UKGgGaAloD0MIMiHmkqpt4r+UhpRSlGgVSzJoFkdAp02oaWHDaXV9lChoBmgJaA9DCMucLouJze2/lIaUUpRoFUsyaBZHQKdNbFnZkCp1fZQoaAZoCWgPQwhZwtoYO2Hmv5SGlFKUaBVLMmgWR0CnTz7hvR7adX2UKGgGaAloD0MI8Nx7uOQ47L+UhpRSlGgVSzJoFkdAp08D+o99t3V9lChoBmgJaA9DCKVneomxzOK/lIaUUpRoFUsyaBZHQKdOyWRA8jl1fZQoaAZoCWgPQwhIxf8dUSHuv5SGlFKUaBVLMmgWR0CnTo1toBaLdX2UKGgGaAloD0MIdeRIZ2Dk4b+UhpRSlGgVSzJoFkdAp1BNa0QbuXV9lChoBmgJaA9DCC1agLbVrOi/lIaUUpRoFUsyaBZHQKdQEo+fRNR1fZQoaAZoCWgPQwjQ1VbsLzvkv5SGlFKUaBVLMmgWR0CnT9gmAskIdX2UKGgGaAloD0MIhbLw9bWu4L+UhpRSlGgVSzJoFkdAp0+cEPlMiHV9lChoBmgJaA9DCIrMXODyWOC/lIaUUpRoFUsyaBZHQKdR9ItDlYF1fZQoaAZoCWgPQwjw2qUNhyXrv5SGlFKUaBVLMmgWR0CnUbqKpDNRdX2UKGgGaAloD0MIDHiZYaOs47+UhpRSlGgVSzJoFkdAp1GArWiDd3V9lChoBmgJaA9DCAYv+grSDOS/lIaUUpRoFUsyaBZHQKdRRYLb5/N1fZQoaAZoCWgPQwgRGVbxRubXv5SGlFKUaBVLMmgWR0CnU7IClrM1dX2UKGgGaAloD0MIl/+Qfvs60b+UhpRSlGgVSzJoFkdAp1N324/eL3V9lChoBmgJaA9DCGPVIMztXtO/lIaUUpRoFUsyaBZHQKdTPf+jua51fZQoaAZoCWgPQwhqos9HGXHfv5SGlFKUaBVLMmgWR0CnUwLZSNwSdX2UKGgGaAloD0MIzH9Iv31d8L+UhpRSlGgVSzJoFkdAp1WqCYkVvnV9lChoBmgJaA9DCP4LBAEydO+/lIaUUpRoFUsyaBZHQKdVb/QSi/R1fZQoaAZoCWgPQwiPVN/5RYnjv5SGlFKUaBVLMmgWR0CnVTZLytmudX2UKGgGaAloD0MIFVPpJ5zd4L+UhpRSlGgVSzJoFkdAp1T7Vx0dR3V9lChoBmgJaA9DCIP5K2SuDNq/lIaUUpRoFUsyaBZHQKdXfVdX1ap1fZQoaAZoCWgPQwgCui9ntqvov5SGlFKUaBVLMmgWR0CnV0NDMNc4dX2UKGgGaAloD0MIApoIG55e17+UhpRSlGgVSzJoFkdAp1cJpi7TUnV9lChoBmgJaA9DCMAjKlQ3F9e/lIaUUpRoFUsyaBZHQKdWzsoDxLF1fZQoaAZoCWgPQwhD5zV2ierjv5SGlFKUaBVLMmgWR0CnWZr08NhFdX2UKGgGaAloD0MI+3lTkQpj57+UhpRSlGgVSzJoFkdAp1lirDIiknV9lChoBmgJaA9DCLzrbMg/M+2/lIaUUpRoFUsyaBZHQKdZKVxjriV1fZQoaAZoCWgPQwjXw5eJIiTnv5SGlFKUaBVLMmgWR0CnWO4X40uUdX2UKGgGaAloD0MIxoUDIVlA6r+UhpRSlGgVSzJoFkdAp1s4F5fMOnV9lChoBmgJaA9DCBaInpRJDeS/lIaUUpRoFUsyaBZHQKda/SPU8V51fZQoaAZoCWgPQwgZyol2FdLiv5SGlFKUaBVLMmgWR0CnWsKnWJ7+dX2UKGgGaAloD0MIUpj3ONOE4b+UhpRSlGgVSzJoFkdAp1qGyiVSoHV9lChoBmgJaA9DCJqxaDo7Gdi/lIaUUpRoFUsyaBZHQKdcTo/Rmbt1fZQoaAZoCWgPQwhbJy7HKxDTv5SGlFKUaBVLMmgWR0CnXBOfVZs9dX2UKGgGaAloD0MIwR2oUx5d7r+UhpRSlGgVSzJoFkdAp1vYx+KCQXV9lChoBmgJaA9DCLYr9MEyNtW/lIaUUpRoFUsyaBZHQKdbnLCemN11fZQoaAZoCWgPQwgVyVcCKbHav5SGlFKUaBVLMmgWR0CnXW7pNbkfdX2UKGgGaAloD0MI09nJ4Ch527+UhpRSlGgVSzJoFkdAp100QyylenV9lChoBmgJaA9DCBYzwtuDkOe/lIaUUpRoFUsyaBZHQKdc+avzOHF1fZQoaAZoCWgPQwiU3je+9kzkv5SGlFKUaBVLMmgWR0CnXL25paicdX2UKGgGaAloD0MIwVjfwOTG5b+UhpRSlGgVSzJoFkdAp16EIJJGv3V9lChoBmgJaA9DCC47xD9s6dW/lIaUUpRoFUsyaBZHQKdeSUh3aBZ1fZQoaAZoCWgPQwjyW3Sy1Prkv5SGlFKUaBVLMmgWR0CnXg6lk6LgdX2UKGgGaAloD0MIkuumlNdK17+UhpRSlGgVSzJoFkdAp13SsdT5wnV9lChoBmgJaA9DCKyrArUYPNq/lIaUUpRoFUsyaBZHQKdfpxo7FKl1fZQoaAZoCWgPQwheg7709ufZv5SGlFKUaBVLMmgWR0CnX2xcmjTKdX2UKGgGaAloD0MIAaH18GUi4r+UhpRSlGgVSzJoFkdAp18x0nw5N3V9lChoBmgJaA9DCOlkqfV+I+C/lIaUUpRoFUsyaBZHQKde9ikwevJ1fZQoaAZoCWgPQwiYio15HTHwv5SGlFKUaBVLMmgWR0CnYLdWIXTFdX2UKGgGaAloD0MIJhjONczQ5b+UhpRSlGgVSzJoFkdAp2B8do3713V9lChoBmgJaA9DCFopBHKJo+G/lIaUUpRoFUsyaBZHQKdgQb8WKuV1fZQoaAZoCWgPQwgxmL9C5srmv5SGlFKUaBVLMmgWR0CnYAXIEKVqdX2UKGgGaAloD0MIaqD5nLtd6r+UhpRSlGgVSzJoFkdAp2HYbOu7pXV9lChoBmgJaA9DCKuVCb/UD/G/lIaUUpRoFUsyaBZHQKdhnXlKbrl1fZQoaAZoCWgPQwjZQLrYtFLpv5SGlFKUaBVLMmgWR0CnYWLksBhhdX2UKGgGaAloD0MIdTxmoDL+2r+UhpRSlGgVSzJoFkdAp2Em76Hj63V9lChoBmgJaA9DCN4FSgosAO+/lIaUUpRoFUsyaBZHQKdjBazu4PR1fZQoaAZoCWgPQwjx1CMNbmvfv5SGlFKUaBVLMmgWR0CnYsrTpgTidX2UKGgGaAloD0MIDoKOVrWk5b+UhpRSlGgVSzJoFkdAp2KQ7ihnJ3V9lChoBmgJaA9DCM5THXIz3OS/lIaUUpRoFUsyaBZHQKdiVOCXhOx1fZQoaAZoCWgPQwhqos9HGfHuv5SGlFKUaBVLMmgWR0CnZCW8h9srdX2UKGgGaAloD0MIR1fp7job37+UhpRSlGgVSzJoFkdAp2PqyhSLqHV9lChoBmgJaA9DCI6PFmcMc+O/lIaUUpRoFUsyaBZHQKdjsDVYp2F1fZQoaAZoCWgPQwhGeHsQAnLov5SGlFKUaBVLMmgWR0CnY3Ql8gIQdX2UKGgGaAloD0MIEojX9Qt25b+UhpRSlGgVSzJoFkdAp2U5yCFsYXV9lChoBmgJaA9DCBGOWfYkMOi/lIaUUpRoFUsyaBZHQKdk/tqpLmJ1fZQoaAZoCWgPQwhIcCNli6Tvv5SGlFKUaBVLMmgWR0CnZMQuuievdX2UKGgGaAloD0MIEW+df7ts4b+UhpRSlGgVSzJoFkdAp2SIIWxhUnV9lChoBmgJaA9DCEvLSL2ncue/lIaUUpRoFUsyaBZHQKdmRoDgZTB1fZQoaAZoCWgPQwgAjdKlf0nhv5SGlFKUaBVLMmgWR0CnZguoxYaHdX2UKGgGaAloD0MIJ2vUQzQ65b+UhpRSlGgVSzJoFkdAp2XREfDDTHV9lChoBmgJaA9DCJnVO9wODei/lIaUUpRoFUsyaBZHQKdllRsMy8B1fZQoaAZoCWgPQwi5T44CRMHhv5SGlFKUaBVLMmgWR0CnZ1UjC53DdX2UKGgGaAloD0MI9x+ZDp2e3L+UhpRSlGgVSzJoFkdAp2caKziS73V9lChoBmgJaA9DCBsOSwM/Kum/lIaUUpRoFUsyaBZHQKdm32kBS1p1fZQoaAZoCWgPQwiBPSZSmk3hv5SGlFKUaBVLMmgWR0CnZqOc2BJ7dX2UKGgGaAloD0MIyXa+nxqv47+UhpRSlGgVSzJoFkdAp2h1V7x/eHV9lChoBmgJaA9DCMZpiCr8meG/lIaUUpRoFUsyaBZHQKdoOp3os7N1fZQoaAZoCWgPQwhWurvOhvzkv5SGlFKUaBVLMmgWR0CnaAAdOqNqdX2UKGgGaAloD0MIPfIHA8894L+UhpRSlGgVSzJoFkdAp2fEU21lXnV9lChoBmgJaA9DCIIBhA8lWum/lIaUUpRoFUsyaBZHQKdpgxmkFfR1fZQoaAZoCWgPQwhtGttrQe/xv5SGlFKUaBVLMmgWR0CnaUgNwzcidX2UKGgGaAloD0MIrwW9N4aA7L+UhpRSlGgVSzJoFkdAp2kNa0QbuXV9lChoBmgJaA9DCHIXYYpyaeO/lIaUUpRoFUsyaBZHQKdo0XtShrZ1fZQoaAZoCWgPQwh9l1KXjOPmv5SGlFKUaBVLMmgWR0CnapHuAqd6dX2UKGgGaAloD0MIHxDoTNpU4b+UhpRSlGgVSzJoFkdAp2pXAGjbjHV9lChoBmgJaA9DCDuL3qmAe+C/lIaUUpRoFUsyaBZHQKdqHGLDQ7d1fZQoaAZoCWgPQwheu7ThsLTgv5SGlFKUaBVLMmgWR0CnaeBzV+ZxdX2UKGgGaAloD0MIt3u5T46C5b+UhpRSlGgVSzJoFkdAp2uomG/N7nV9lChoBmgJaA9DCNE/wcWKmuO/lIaUUpRoFUsyaBZHQKdrbd1uBMB1fZQoaAZoCWgPQwgddAmH3mLgv5SGlFKUaBVLMmgWR0CnazM8gZCOdX2UKGgGaAloD0MIUOPe/IYJ4L+UhpRSlGgVSzJoFkdAp2r3YQJ5V3V9lChoBmgJaA9DCBNIiV3bW+G/lIaUUpRoFUsyaBZHQKdsrg/C66J1fZQoaAZoCWgPQwj5vOKpRxrmv5SGlFKUaBVLMmgWR0CnbHMdkrf+dX2UKGgGaAloD0MICg+aXffW47+UhpRSlGgVSzJoFkdAp2w4fyPMjnV9lChoBmgJaA9DCH4dOGdE6e2/lIaUUpRoFUsyaBZHQKdr/I8yN4t1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5841c570dab0d696cedfbb825d9e9ea92fc9022943097e065bacd691a58414b6
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31caf5edef014d58a29690e68b3e83f5f075efccbaaf59eb7ab040add77b2ec3
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc38aa9a940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc38aa9d2a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675528486961382745, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW6ytP1ob079kway/vOHFvqIEsr41q5Q/hcYUPVgifjrQpNS/pgNkP/Wvmz8yJh+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]]", "desired_goal": "[[ 1.3568224e+00 -1.6492722e+00 -1.3496518e+00]\n [-3.8648784e-01 -3.4769160e-01 1.1614748e+00]\n [ 3.6322135e-02 9.6944487e-04 -1.6612797e+00]\n [ 8.9068067e-01 1.2163073e+00 -6.2167656e-01]]", "observation": "[[ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArdMbPVjAtT0NRoA+L/6tPfSicz2ohLs9yHFyPVkYmz0kwxg8peu3ve9gIrzo04w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03804367 0.08874577 0.25053445]\n [ 0.08495747 0.05948158 0.09156162]\n [ 0.05919054 0.07573003 0.00932387]\n [-0.08980493 -0.00991081 0.27505422]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMhzPZ0A977+UhpRSlIwBbJRLMowBdJRHQKdOHezlcQl1fZQoaAZoCWgPQwgPJzCd1m3qv5SGlFKUaBVLMmgWR0CnTeMImgJ1dX2UKGgGaAloD0MIMiHmkqpt4r+UhpRSlGgVSzJoFkdAp02oaWHDaXV9lChoBmgJaA9DCMucLouJze2/lIaUUpRoFUsyaBZHQKdNbFnZkCp1fZQoaAZoCWgPQwhZwtoYO2Hmv5SGlFKUaBVLMmgWR0CnTz7hvR7adX2UKGgGaAloD0MI8Nx7uOQ47L+UhpRSlGgVSzJoFkdAp08D+o99t3V9lChoBmgJaA9DCKVneomxzOK/lIaUUpRoFUsyaBZHQKdOyWRA8jl1fZQoaAZoCWgPQwhIxf8dUSHuv5SGlFKUaBVLMmgWR0CnTo1toBaLdX2UKGgGaAloD0MIdeRIZ2Dk4b+UhpRSlGgVSzJoFkdAp1BNa0QbuXV9lChoBmgJaA9DCC1agLbVrOi/lIaUUpRoFUsyaBZHQKdQEo+fRNR1fZQoaAZoCWgPQwjQ1VbsLzvkv5SGlFKUaBVLMmgWR0CnT9gmAskIdX2UKGgGaAloD0MIhbLw9bWu4L+UhpRSlGgVSzJoFkdAp0+cEPlMiHV9lChoBmgJaA9DCIrMXODyWOC/lIaUUpRoFUsyaBZHQKdR9ItDlYF1fZQoaAZoCWgPQwjw2qUNhyXrv5SGlFKUaBVLMmgWR0CnUbqKpDNRdX2UKGgGaAloD0MIDHiZYaOs47+UhpRSlGgVSzJoFkdAp1GArWiDd3V9lChoBmgJaA9DCAYv+grSDOS/lIaUUpRoFUsyaBZHQKdRRYLb5/N1fZQoaAZoCWgPQwgRGVbxRubXv5SGlFKUaBVLMmgWR0CnU7IClrM1dX2UKGgGaAloD0MIl/+Qfvs60b+UhpRSlGgVSzJoFkdAp1N324/eL3V9lChoBmgJaA9DCGPVIMztXtO/lIaUUpRoFUsyaBZHQKdTPf+jua51fZQoaAZoCWgPQwhqos9HGXHfv5SGlFKUaBVLMmgWR0CnUwLZSNwSdX2UKGgGaAloD0MIzH9Iv31d8L+UhpRSlGgVSzJoFkdAp1WqCYkVvnV9lChoBmgJaA9DCP4LBAEydO+/lIaUUpRoFUsyaBZHQKdVb/QSi/R1fZQoaAZoCWgPQwiPVN/5RYnjv5SGlFKUaBVLMmgWR0CnVTZLytmudX2UKGgGaAloD0MIFVPpJ5zd4L+UhpRSlGgVSzJoFkdAp1T7Vx0dR3V9lChoBmgJaA9DCIP5K2SuDNq/lIaUUpRoFUsyaBZHQKdXfVdX1ap1fZQoaAZoCWgPQwgCui9ntqvov5SGlFKUaBVLMmgWR0CnV0NDMNc4dX2UKGgGaAloD0MIApoIG55e17+UhpRSlGgVSzJoFkdAp1cJpi7TUnV9lChoBmgJaA9DCMAjKlQ3F9e/lIaUUpRoFUsyaBZHQKdWzsoDxLF1fZQoaAZoCWgPQwhD5zV2ierjv5SGlFKUaBVLMmgWR0CnWZr08NhFdX2UKGgGaAloD0MI+3lTkQpj57+UhpRSlGgVSzJoFkdAp1lirDIiknV9lChoBmgJaA9DCLzrbMg/M+2/lIaUUpRoFUsyaBZHQKdZKVxjriV1fZQoaAZoCWgPQwjXw5eJIiTnv5SGlFKUaBVLMmgWR0CnWO4X40uUdX2UKGgGaAloD0MIxoUDIVlA6r+UhpRSlGgVSzJoFkdAp1s4F5fMOnV9lChoBmgJaA9DCBaInpRJDeS/lIaUUpRoFUsyaBZHQKda/SPU8V51fZQoaAZoCWgPQwgZyol2FdLiv5SGlFKUaBVLMmgWR0CnWsKnWJ7+dX2UKGgGaAloD0MIUpj3ONOE4b+UhpRSlGgVSzJoFkdAp1qGyiVSoHV9lChoBmgJaA9DCJqxaDo7Gdi/lIaUUpRoFUsyaBZHQKdcTo/Rmbt1fZQoaAZoCWgPQwhbJy7HKxDTv5SGlFKUaBVLMmgWR0CnXBOfVZs9dX2UKGgGaAloD0MIwR2oUx5d7r+UhpRSlGgVSzJoFkdAp1vYx+KCQXV9lChoBmgJaA9DCLYr9MEyNtW/lIaUUpRoFUsyaBZHQKdbnLCemN11fZQoaAZoCWgPQwgVyVcCKbHav5SGlFKUaBVLMmgWR0CnXW7pNbkfdX2UKGgGaAloD0MI09nJ4Ch527+UhpRSlGgVSzJoFkdAp100QyylenV9lChoBmgJaA9DCBYzwtuDkOe/lIaUUpRoFUsyaBZHQKdc+avzOHF1fZQoaAZoCWgPQwiU3je+9kzkv5SGlFKUaBVLMmgWR0CnXL25paicdX2UKGgGaAloD0MIwVjfwOTG5b+UhpRSlGgVSzJoFkdAp16EIJJGv3V9lChoBmgJaA9DCC47xD9s6dW/lIaUUpRoFUsyaBZHQKdeSUh3aBZ1fZQoaAZoCWgPQwjyW3Sy1Prkv5SGlFKUaBVLMmgWR0CnXg6lk6LgdX2UKGgGaAloD0MIkuumlNdK17+UhpRSlGgVSzJoFkdAp13SsdT5wnV9lChoBmgJaA9DCKyrArUYPNq/lIaUUpRoFUsyaBZHQKdfpxo7FKl1fZQoaAZoCWgPQwheg7709ufZv5SGlFKUaBVLMmgWR0CnX2xcmjTKdX2UKGgGaAloD0MIAaH18GUi4r+UhpRSlGgVSzJoFkdAp18x0nw5N3V9lChoBmgJaA9DCOlkqfV+I+C/lIaUUpRoFUsyaBZHQKde9ikwevJ1fZQoaAZoCWgPQwiYio15HTHwv5SGlFKUaBVLMmgWR0CnYLdWIXTFdX2UKGgGaAloD0MIJhjONczQ5b+UhpRSlGgVSzJoFkdAp2B8do3713V9lChoBmgJaA9DCFopBHKJo+G/lIaUUpRoFUsyaBZHQKdgQb8WKuV1fZQoaAZoCWgPQwgxmL9C5srmv5SGlFKUaBVLMmgWR0CnYAXIEKVqdX2UKGgGaAloD0MIaqD5nLtd6r+UhpRSlGgVSzJoFkdAp2HYbOu7pXV9lChoBmgJaA9DCKuVCb/UD/G/lIaUUpRoFUsyaBZHQKdhnXlKbrl1fZQoaAZoCWgPQwjZQLrYtFLpv5SGlFKUaBVLMmgWR0CnYWLksBhhdX2UKGgGaAloD0MIdTxmoDL+2r+UhpRSlGgVSzJoFkdAp2Em76Hj63V9lChoBmgJaA9DCN4FSgosAO+/lIaUUpRoFUsyaBZHQKdjBazu4PR1fZQoaAZoCWgPQwjx1CMNbmvfv5SGlFKUaBVLMmgWR0CnYsrTpgTidX2UKGgGaAloD0MIDoKOVrWk5b+UhpRSlGgVSzJoFkdAp2KQ7ihnJ3V9lChoBmgJaA9DCM5THXIz3OS/lIaUUpRoFUsyaBZHQKdiVOCXhOx1fZQoaAZoCWgPQwhqos9HGfHuv5SGlFKUaBVLMmgWR0CnZCW8h9srdX2UKGgGaAloD0MIR1fp7job37+UhpRSlGgVSzJoFkdAp2PqyhSLqHV9lChoBmgJaA9DCI6PFmcMc+O/lIaUUpRoFUsyaBZHQKdjsDVYp2F1fZQoaAZoCWgPQwhGeHsQAnLov5SGlFKUaBVLMmgWR0CnY3Ql8gIQdX2UKGgGaAloD0MIEojX9Qt25b+UhpRSlGgVSzJoFkdAp2U5yCFsYXV9lChoBmgJaA9DCBGOWfYkMOi/lIaUUpRoFUsyaBZHQKdk/tqpLmJ1fZQoaAZoCWgPQwhIcCNli6Tvv5SGlFKUaBVLMmgWR0CnZMQuuievdX2UKGgGaAloD0MIEW+df7ts4b+UhpRSlGgVSzJoFkdAp2SIIWxhUnV9lChoBmgJaA9DCEvLSL2ncue/lIaUUpRoFUsyaBZHQKdmRoDgZTB1fZQoaAZoCWgPQwgAjdKlf0nhv5SGlFKUaBVLMmgWR0CnZguoxYaHdX2UKGgGaAloD0MIJ2vUQzQ65b+UhpRSlGgVSzJoFkdAp2XREfDDTHV9lChoBmgJaA9DCJnVO9wODei/lIaUUpRoFUsyaBZHQKdllRsMy8B1fZQoaAZoCWgPQwi5T44CRMHhv5SGlFKUaBVLMmgWR0CnZ1UjC53DdX2UKGgGaAloD0MI9x+ZDp2e3L+UhpRSlGgVSzJoFkdAp2caKziS73V9lChoBmgJaA9DCBsOSwM/Kum/lIaUUpRoFUsyaBZHQKdm32kBS1p1fZQoaAZoCWgPQwiBPSZSmk3hv5SGlFKUaBVLMmgWR0CnZqOc2BJ7dX2UKGgGaAloD0MIyXa+nxqv47+UhpRSlGgVSzJoFkdAp2h1V7x/eHV9lChoBmgJaA9DCMZpiCr8meG/lIaUUpRoFUsyaBZHQKdoOp3os7N1fZQoaAZoCWgPQwhWurvOhvzkv5SGlFKUaBVLMmgWR0CnaAAdOqNqdX2UKGgGaAloD0MIPfIHA8894L+UhpRSlGgVSzJoFkdAp2fEU21lXnV9lChoBmgJaA9DCIIBhA8lWum/lIaUUpRoFUsyaBZHQKdpgxmkFfR1fZQoaAZoCWgPQwhtGttrQe/xv5SGlFKUaBVLMmgWR0CnaUgNwzcidX2UKGgGaAloD0MIrwW9N4aA7L+UhpRSlGgVSzJoFkdAp2kNa0QbuXV9lChoBmgJaA9DCHIXYYpyaeO/lIaUUpRoFUsyaBZHQKdo0XtShrZ1fZQoaAZoCWgPQwh9l1KXjOPmv5SGlFKUaBVLMmgWR0CnapHuAqd6dX2UKGgGaAloD0MIHxDoTNpU4b+UhpRSlGgVSzJoFkdAp2pXAGjbjHV9lChoBmgJaA9DCDuL3qmAe+C/lIaUUpRoFUsyaBZHQKdqHGLDQ7d1fZQoaAZoCWgPQwheu7ThsLTgv5SGlFKUaBVLMmgWR0CnaeBzV+ZxdX2UKGgGaAloD0MIt3u5T46C5b+UhpRSlGgVSzJoFkdAp2uomG/N7nV9lChoBmgJaA9DCNE/wcWKmuO/lIaUUpRoFUsyaBZHQKdrbd1uBMB1fZQoaAZoCWgPQwgddAmH3mLgv5SGlFKUaBVLMmgWR0CnazM8gZCOdX2UKGgGaAloD0MIUOPe/IYJ4L+UhpRSlGgVSzJoFkdAp2r3YQJ5V3V9lChoBmgJaA9DCBNIiV3bW+G/lIaUUpRoFUsyaBZHQKdsrg/C66J1fZQoaAZoCWgPQwj5vOKpRxrmv5SGlFKUaBVLMmgWR0CnbHMdkrf+dX2UKGgGaAloD0MICg+aXffW47+UhpRSlGgVSzJoFkdAp2w4fyPMjnV9lChoBmgJaA9DCH4dOGdE6e2/lIaUUpRoFUsyaBZHQKdr/I8yN4t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (341 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.6783795527182519, "std_reward": 0.11403307721215701, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T17:24:53.426151"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3125f76192d397be9ae4ab07ea1b8b2b3f4a607f9d485f9bfd07f8876403a79d
3
+ size 3056