Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.68 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d2c69eede583ca9211cec79f20ba7361ac1e433f67a7531d24a25e049874319e
|
3 |
+
size 108059
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc38aa9a940>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fc38aa9d2a0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675528486961382745,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW6ytP1ob079kway/vOHFvqIEsr41q5Q/hcYUPVgifjrQpNS/pgNkP/Wvmz8yJh+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]]",
|
60 |
+
"desired_goal": "[[ 1.3568224e+00 -1.6492722e+00 -1.3496518e+00]\n [-3.8648784e-01 -3.4769160e-01 1.1614748e+00]\n [ 3.6322135e-02 9.6944487e-04 -1.6612797e+00]\n [ 8.9068067e-01 1.2163073e+00 -6.2167656e-01]]",
|
61 |
+
"observation": "[[ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArdMbPVjAtT0NRoA+L/6tPfSicz2ohLs9yHFyPVkYmz0kwxg8peu3ve9gIrzo04w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.03804367 0.08874577 0.25053445]\n [ 0.08495747 0.05948158 0.09156162]\n [ 0.05919054 0.07573003 0.00932387]\n [-0.08980493 -0.00991081 0.27505422]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMhzPZ0A977+UhpRSlIwBbJRLMowBdJRHQKdOHezlcQl1fZQoaAZoCWgPQwgPJzCd1m3qv5SGlFKUaBVLMmgWR0CnTeMImgJ1dX2UKGgGaAloD0MIMiHmkqpt4r+UhpRSlGgVSzJoFkdAp02oaWHDaXV9lChoBmgJaA9DCMucLouJze2/lIaUUpRoFUsyaBZHQKdNbFnZkCp1fZQoaAZoCWgPQwhZwtoYO2Hmv5SGlFKUaBVLMmgWR0CnTz7hvR7adX2UKGgGaAloD0MI8Nx7uOQ47L+UhpRSlGgVSzJoFkdAp08D+o99t3V9lChoBmgJaA9DCKVneomxzOK/lIaUUpRoFUsyaBZHQKdOyWRA8jl1fZQoaAZoCWgPQwhIxf8dUSHuv5SGlFKUaBVLMmgWR0CnTo1toBaLdX2UKGgGaAloD0MIdeRIZ2Dk4b+UhpRSlGgVSzJoFkdAp1BNa0QbuXV9lChoBmgJaA9DCC1agLbVrOi/lIaUUpRoFUsyaBZHQKdQEo+fRNR1fZQoaAZoCWgPQwjQ1VbsLzvkv5SGlFKUaBVLMmgWR0CnT9gmAskIdX2UKGgGaAloD0MIhbLw9bWu4L+UhpRSlGgVSzJoFkdAp0+cEPlMiHV9lChoBmgJaA9DCIrMXODyWOC/lIaUUpRoFUsyaBZHQKdR9ItDlYF1fZQoaAZoCWgPQwjw2qUNhyXrv5SGlFKUaBVLMmgWR0CnUbqKpDNRdX2UKGgGaAloD0MIDHiZYaOs47+UhpRSlGgVSzJoFkdAp1GArWiDd3V9lChoBmgJaA9DCAYv+grSDOS/lIaUUpRoFUsyaBZHQKdRRYLb5/N1fZQoaAZoCWgPQwgRGVbxRubXv5SGlFKUaBVLMmgWR0CnU7IClrM1dX2UKGgGaAloD0MIl/+Qfvs60b+UhpRSlGgVSzJoFkdAp1N324/eL3V9lChoBmgJaA9DCGPVIMztXtO/lIaUUpRoFUsyaBZHQKdTPf+jua51fZQoaAZoCWgPQwhqos9HGXHfv5SGlFKUaBVLMmgWR0CnUwLZSNwSdX2UKGgGaAloD0MIzH9Iv31d8L+UhpRSlGgVSzJoFkdAp1WqCYkVvnV9lChoBmgJaA9DCP4LBAEydO+/lIaUUpRoFUsyaBZHQKdVb/QSi/R1fZQoaAZoCWgPQwiPVN/5RYnjv5SGlFKUaBVLMmgWR0CnVTZLytmudX2UKGgGaAloD0MIFVPpJ5zd4L+UhpRSlGgVSzJoFkdAp1T7Vx0dR3V9lChoBmgJaA9DCIP5K2SuDNq/lIaUUpRoFUsyaBZHQKdXfVdX1ap1fZQoaAZoCWgPQwgCui9ntqvov5SGlFKUaBVLMmgWR0CnV0NDMNc4dX2UKGgGaAloD0MIApoIG55e17+UhpRSlGgVSzJoFkdAp1cJpi7TUnV9lChoBmgJaA9DCMAjKlQ3F9e/lIaUUpRoFUsyaBZHQKdWzsoDxLF1fZQoaAZoCWgPQwhD5zV2ierjv5SGlFKUaBVLMmgWR0CnWZr08NhFdX2UKGgGaAloD0MI+3lTkQpj57+UhpRSlGgVSzJoFkdAp1lirDIiknV9lChoBmgJaA9DCLzrbMg/M+2/lIaUUpRoFUsyaBZHQKdZKVxjriV1fZQoaAZoCWgPQwjXw5eJIiTnv5SGlFKUaBVLMmgWR0CnWO4X40uUdX2UKGgGaAloD0MIxoUDIVlA6r+UhpRSlGgVSzJoFkdAp1s4F5fMOnV9lChoBmgJaA9DCBaInpRJDeS/lIaUUpRoFUsyaBZHQKda/SPU8V51fZQoaAZoCWgPQwgZyol2FdLiv5SGlFKUaBVLMmgWR0CnWsKnWJ7+dX2UKGgGaAloD0MIUpj3ONOE4b+UhpRSlGgVSzJoFkdAp1qGyiVSoHV9lChoBmgJaA9DCJqxaDo7Gdi/lIaUUpRoFUsyaBZHQKdcTo/Rmbt1fZQoaAZoCWgPQwhbJy7HKxDTv5SGlFKUaBVLMmgWR0CnXBOfVZs9dX2UKGgGaAloD0MIwR2oUx5d7r+UhpRSlGgVSzJoFkdAp1vYx+KCQXV9lChoBmgJaA9DCLYr9MEyNtW/lIaUUpRoFUsyaBZHQKdbnLCemN11fZQoaAZoCWgPQwgVyVcCKbHav5SGlFKUaBVLMmgWR0CnXW7pNbkfdX2UKGgGaAloD0MI09nJ4Ch527+UhpRSlGgVSzJoFkdAp100QyylenV9lChoBmgJaA9DCBYzwtuDkOe/lIaUUpRoFUsyaBZHQKdc+avzOHF1fZQoaAZoCWgPQwiU3je+9kzkv5SGlFKUaBVLMmgWR0CnXL25paicdX2UKGgGaAloD0MIwVjfwOTG5b+UhpRSlGgVSzJoFkdAp16EIJJGv3V9lChoBmgJaA9DCC47xD9s6dW/lIaUUpRoFUsyaBZHQKdeSUh3aBZ1fZQoaAZoCWgPQwjyW3Sy1Prkv5SGlFKUaBVLMmgWR0CnXg6lk6LgdX2UKGgGaAloD0MIkuumlNdK17+UhpRSlGgVSzJoFkdAp13SsdT5wnV9lChoBmgJaA9DCKyrArUYPNq/lIaUUpRoFUsyaBZHQKdfpxo7FKl1fZQoaAZoCWgPQwheg7709ufZv5SGlFKUaBVLMmgWR0CnX2xcmjTKdX2UKGgGaAloD0MIAaH18GUi4r+UhpRSlGgVSzJoFkdAp18x0nw5N3V9lChoBmgJaA9DCOlkqfV+I+C/lIaUUpRoFUsyaBZHQKde9ikwevJ1fZQoaAZoCWgPQwiYio15HTHwv5SGlFKUaBVLMmgWR0CnYLdWIXTFdX2UKGgGaAloD0MIJhjONczQ5b+UhpRSlGgVSzJoFkdAp2B8do3713V9lChoBmgJaA9DCFopBHKJo+G/lIaUUpRoFUsyaBZHQKdgQb8WKuV1fZQoaAZoCWgPQwgxmL9C5srmv5SGlFKUaBVLMmgWR0CnYAXIEKVqdX2UKGgGaAloD0MIaqD5nLtd6r+UhpRSlGgVSzJoFkdAp2HYbOu7pXV9lChoBmgJaA9DCKuVCb/UD/G/lIaUUpRoFUsyaBZHQKdhnXlKbrl1fZQoaAZoCWgPQwjZQLrYtFLpv5SGlFKUaBVLMmgWR0CnYWLksBhhdX2UKGgGaAloD0MIdTxmoDL+2r+UhpRSlGgVSzJoFkdAp2Em76Hj63V9lChoBmgJaA9DCN4FSgosAO+/lIaUUpRoFUsyaBZHQKdjBazu4PR1fZQoaAZoCWgPQwjx1CMNbmvfv5SGlFKUaBVLMmgWR0CnYsrTpgTidX2UKGgGaAloD0MIDoKOVrWk5b+UhpRSlGgVSzJoFkdAp2KQ7ihnJ3V9lChoBmgJaA9DCM5THXIz3OS/lIaUUpRoFUsyaBZHQKdiVOCXhOx1fZQoaAZoCWgPQwhqos9HGfHuv5SGlFKUaBVLMmgWR0CnZCW8h9srdX2UKGgGaAloD0MIR1fp7job37+UhpRSlGgVSzJoFkdAp2PqyhSLqHV9lChoBmgJaA9DCI6PFmcMc+O/lIaUUpRoFUsyaBZHQKdjsDVYp2F1fZQoaAZoCWgPQwhGeHsQAnLov5SGlFKUaBVLMmgWR0CnY3Ql8gIQdX2UKGgGaAloD0MIEojX9Qt25b+UhpRSlGgVSzJoFkdAp2U5yCFsYXV9lChoBmgJaA9DCBGOWfYkMOi/lIaUUpRoFUsyaBZHQKdk/tqpLmJ1fZQoaAZoCWgPQwhIcCNli6Tvv5SGlFKUaBVLMmgWR0CnZMQuuievdX2UKGgGaAloD0MIEW+df7ts4b+UhpRSlGgVSzJoFkdAp2SIIWxhUnV9lChoBmgJaA9DCEvLSL2ncue/lIaUUpRoFUsyaBZHQKdmRoDgZTB1fZQoaAZoCWgPQwgAjdKlf0nhv5SGlFKUaBVLMmgWR0CnZguoxYaHdX2UKGgGaAloD0MIJ2vUQzQ65b+UhpRSlGgVSzJoFkdAp2XREfDDTHV9lChoBmgJaA9DCJnVO9wODei/lIaUUpRoFUsyaBZHQKdllRsMy8B1fZQoaAZoCWgPQwi5T44CRMHhv5SGlFKUaBVLMmgWR0CnZ1UjC53DdX2UKGgGaAloD0MI9x+ZDp2e3L+UhpRSlGgVSzJoFkdAp2caKziS73V9lChoBmgJaA9DCBsOSwM/Kum/lIaUUpRoFUsyaBZHQKdm32kBS1p1fZQoaAZoCWgPQwiBPSZSmk3hv5SGlFKUaBVLMmgWR0CnZqOc2BJ7dX2UKGgGaAloD0MIyXa+nxqv47+UhpRSlGgVSzJoFkdAp2h1V7x/eHV9lChoBmgJaA9DCMZpiCr8meG/lIaUUpRoFUsyaBZHQKdoOp3os7N1fZQoaAZoCWgPQwhWurvOhvzkv5SGlFKUaBVLMmgWR0CnaAAdOqNqdX2UKGgGaAloD0MIPfIHA8894L+UhpRSlGgVSzJoFkdAp2fEU21lXnV9lChoBmgJaA9DCIIBhA8lWum/lIaUUpRoFUsyaBZHQKdpgxmkFfR1fZQoaAZoCWgPQwhtGttrQe/xv5SGlFKUaBVLMmgWR0CnaUgNwzcidX2UKGgGaAloD0MIrwW9N4aA7L+UhpRSlGgVSzJoFkdAp2kNa0QbuXV9lChoBmgJaA9DCHIXYYpyaeO/lIaUUpRoFUsyaBZHQKdo0XtShrZ1fZQoaAZoCWgPQwh9l1KXjOPmv5SGlFKUaBVLMmgWR0CnapHuAqd6dX2UKGgGaAloD0MIHxDoTNpU4b+UhpRSlGgVSzJoFkdAp2pXAGjbjHV9lChoBmgJaA9DCDuL3qmAe+C/lIaUUpRoFUsyaBZHQKdqHGLDQ7d1fZQoaAZoCWgPQwheu7ThsLTgv5SGlFKUaBVLMmgWR0CnaeBzV+ZxdX2UKGgGaAloD0MIt3u5T46C5b+UhpRSlGgVSzJoFkdAp2uomG/N7nV9lChoBmgJaA9DCNE/wcWKmuO/lIaUUpRoFUsyaBZHQKdrbd1uBMB1fZQoaAZoCWgPQwgddAmH3mLgv5SGlFKUaBVLMmgWR0CnazM8gZCOdX2UKGgGaAloD0MIUOPe/IYJ4L+UhpRSlGgVSzJoFkdAp2r3YQJ5V3V9lChoBmgJaA9DCBNIiV3bW+G/lIaUUpRoFUsyaBZHQKdsrg/C66J1fZQoaAZoCWgPQwj5vOKpRxrmv5SGlFKUaBVLMmgWR0CnbHMdkrf+dX2UKGgGaAloD0MICg+aXffW47+UhpRSlGgVSzJoFkdAp2w4fyPMjnV9lChoBmgJaA9DCH4dOGdE6e2/lIaUUpRoFUsyaBZHQKdr/I8yN4t1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5841c570dab0d696cedfbb825d9e9ea92fc9022943097e065bacd691a58414b6
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:31caf5edef014d58a29690e68b3e83f5f075efccbaaf59eb7ab040add77b2ec3
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc38aa9a940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc38aa9d2a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675528486961382745, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAdM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/dM6vPgoM07zmBQ4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW6ytP1ob079kway/vOHFvqIEsr41q5Q/hcYUPVgifjrQpNS/pgNkP/Wvmz8yJh+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzx0zq8+CgzTvOYFDj9ZTQE8snZ+u4HaLzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]\n [ 0.343372 -0.02576258 0.5547775 ]]", "desired_goal": "[[ 1.3568224e+00 -1.6492722e+00 -1.3496518e+00]\n [-3.8648784e-01 -3.4769160e-01 1.1614748e+00]\n [ 3.6322135e-02 9.6944487e-04 -1.6612797e+00]\n [ 8.9068067e-01 1.2163073e+00 -6.2167656e-01]]", "observation": "[[ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]\n [ 0.343372 -0.02576258 0.5547775 0.00789198 -0.00388281 0.01073325]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArdMbPVjAtT0NRoA+L/6tPfSicz2ohLs9yHFyPVkYmz0kwxg8peu3ve9gIrzo04w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03804367 0.08874577 0.25053445]\n [ 0.08495747 0.05948158 0.09156162]\n [ 0.05919054 0.07573003 0.00932387]\n [-0.08980493 -0.00991081 0.27505422]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMhzPZ0A977+UhpRSlIwBbJRLMowBdJRHQKdOHezlcQl1fZQoaAZoCWgPQwgPJzCd1m3qv5SGlFKUaBVLMmgWR0CnTeMImgJ1dX2UKGgGaAloD0MIMiHmkqpt4r+UhpRSlGgVSzJoFkdAp02oaWHDaXV9lChoBmgJaA9DCMucLouJze2/lIaUUpRoFUsyaBZHQKdNbFnZkCp1fZQoaAZoCWgPQwhZwtoYO2Hmv5SGlFKUaBVLMmgWR0CnTz7hvR7adX2UKGgGaAloD0MI8Nx7uOQ47L+UhpRSlGgVSzJoFkdAp08D+o99t3V9lChoBmgJaA9DCKVneomxzOK/lIaUUpRoFUsyaBZHQKdOyWRA8jl1fZQoaAZoCWgPQwhIxf8dUSHuv5SGlFKUaBVLMmgWR0CnTo1toBaLdX2UKGgGaAloD0MIdeRIZ2Dk4b+UhpRSlGgVSzJoFkdAp1BNa0QbuXV9lChoBmgJaA9DCC1agLbVrOi/lIaUUpRoFUsyaBZHQKdQEo+fRNR1fZQoaAZoCWgPQwjQ1VbsLzvkv5SGlFKUaBVLMmgWR0CnT9gmAskIdX2UKGgGaAloD0MIhbLw9bWu4L+UhpRSlGgVSzJoFkdAp0+cEPlMiHV9lChoBmgJaA9DCIrMXODyWOC/lIaUUpRoFUsyaBZHQKdR9ItDlYF1fZQoaAZoCWgPQwjw2qUNhyXrv5SGlFKUaBVLMmgWR0CnUbqKpDNRdX2UKGgGaAloD0MIDHiZYaOs47+UhpRSlGgVSzJoFkdAp1GArWiDd3V9lChoBmgJaA9DCAYv+grSDOS/lIaUUpRoFUsyaBZHQKdRRYLb5/N1fZQoaAZoCWgPQwgRGVbxRubXv5SGlFKUaBVLMmgWR0CnU7IClrM1dX2UKGgGaAloD0MIl/+Qfvs60b+UhpRSlGgVSzJoFkdAp1N324/eL3V9lChoBmgJaA9DCGPVIMztXtO/lIaUUpRoFUsyaBZHQKdTPf+jua51fZQoaAZoCWgPQwhqos9HGXHfv5SGlFKUaBVLMmgWR0CnUwLZSNwSdX2UKGgGaAloD0MIzH9Iv31d8L+UhpRSlGgVSzJoFkdAp1WqCYkVvnV9lChoBmgJaA9DCP4LBAEydO+/lIaUUpRoFUsyaBZHQKdVb/QSi/R1fZQoaAZoCWgPQwiPVN/5RYnjv5SGlFKUaBVLMmgWR0CnVTZLytmudX2UKGgGaAloD0MIFVPpJ5zd4L+UhpRSlGgVSzJoFkdAp1T7Vx0dR3V9lChoBmgJaA9DCIP5K2SuDNq/lIaUUpRoFUsyaBZHQKdXfVdX1ap1fZQoaAZoCWgPQwgCui9ntqvov5SGlFKUaBVLMmgWR0CnV0NDMNc4dX2UKGgGaAloD0MIApoIG55e17+UhpRSlGgVSzJoFkdAp1cJpi7TUnV9lChoBmgJaA9DCMAjKlQ3F9e/lIaUUpRoFUsyaBZHQKdWzsoDxLF1fZQoaAZoCWgPQwhD5zV2ierjv5SGlFKUaBVLMmgWR0CnWZr08NhFdX2UKGgGaAloD0MI+3lTkQpj57+UhpRSlGgVSzJoFkdAp1lirDIiknV9lChoBmgJaA9DCLzrbMg/M+2/lIaUUpRoFUsyaBZHQKdZKVxjriV1fZQoaAZoCWgPQwjXw5eJIiTnv5SGlFKUaBVLMmgWR0CnWO4X40uUdX2UKGgGaAloD0MIxoUDIVlA6r+UhpRSlGgVSzJoFkdAp1s4F5fMOnV9lChoBmgJaA9DCBaInpRJDeS/lIaUUpRoFUsyaBZHQKda/SPU8V51fZQoaAZoCWgPQwgZyol2FdLiv5SGlFKUaBVLMmgWR0CnWsKnWJ7+dX2UKGgGaAloD0MIUpj3ONOE4b+UhpRSlGgVSzJoFkdAp1qGyiVSoHV9lChoBmgJaA9DCJqxaDo7Gdi/lIaUUpRoFUsyaBZHQKdcTo/Rmbt1fZQoaAZoCWgPQwhbJy7HKxDTv5SGlFKUaBVLMmgWR0CnXBOfVZs9dX2UKGgGaAloD0MIwR2oUx5d7r+UhpRSlGgVSzJoFkdAp1vYx+KCQXV9lChoBmgJaA9DCLYr9MEyNtW/lIaUUpRoFUsyaBZHQKdbnLCemN11fZQoaAZoCWgPQwgVyVcCKbHav5SGlFKUaBVLMmgWR0CnXW7pNbkfdX2UKGgGaAloD0MI09nJ4Ch527+UhpRSlGgVSzJoFkdAp100QyylenV9lChoBmgJaA9DCBYzwtuDkOe/lIaUUpRoFUsyaBZHQKdc+avzOHF1fZQoaAZoCWgPQwiU3je+9kzkv5SGlFKUaBVLMmgWR0CnXL25paicdX2UKGgGaAloD0MIwVjfwOTG5b+UhpRSlGgVSzJoFkdAp16EIJJGv3V9lChoBmgJaA9DCC47xD9s6dW/lIaUUpRoFUsyaBZHQKdeSUh3aBZ1fZQoaAZoCWgPQwjyW3Sy1Prkv5SGlFKUaBVLMmgWR0CnXg6lk6LgdX2UKGgGaAloD0MIkuumlNdK17+UhpRSlGgVSzJoFkdAp13SsdT5wnV9lChoBmgJaA9DCKyrArUYPNq/lIaUUpRoFUsyaBZHQKdfpxo7FKl1fZQoaAZoCWgPQwheg7709ufZv5SGlFKUaBVLMmgWR0CnX2xcmjTKdX2UKGgGaAloD0MIAaH18GUi4r+UhpRSlGgVSzJoFkdAp18x0nw5N3V9lChoBmgJaA9DCOlkqfV+I+C/lIaUUpRoFUsyaBZHQKde9ikwevJ1fZQoaAZoCWgPQwiYio15HTHwv5SGlFKUaBVLMmgWR0CnYLdWIXTFdX2UKGgGaAloD0MIJhjONczQ5b+UhpRSlGgVSzJoFkdAp2B8do3713V9lChoBmgJaA9DCFopBHKJo+G/lIaUUpRoFUsyaBZHQKdgQb8WKuV1fZQoaAZoCWgPQwgxmL9C5srmv5SGlFKUaBVLMmgWR0CnYAXIEKVqdX2UKGgGaAloD0MIaqD5nLtd6r+UhpRSlGgVSzJoFkdAp2HYbOu7pXV9lChoBmgJaA9DCKuVCb/UD/G/lIaUUpRoFUsyaBZHQKdhnXlKbrl1fZQoaAZoCWgPQwjZQLrYtFLpv5SGlFKUaBVLMmgWR0CnYWLksBhhdX2UKGgGaAloD0MIdTxmoDL+2r+UhpRSlGgVSzJoFkdAp2Em76Hj63V9lChoBmgJaA9DCN4FSgosAO+/lIaUUpRoFUsyaBZHQKdjBazu4PR1fZQoaAZoCWgPQwjx1CMNbmvfv5SGlFKUaBVLMmgWR0CnYsrTpgTidX2UKGgGaAloD0MIDoKOVrWk5b+UhpRSlGgVSzJoFkdAp2KQ7ihnJ3V9lChoBmgJaA9DCM5THXIz3OS/lIaUUpRoFUsyaBZHQKdiVOCXhOx1fZQoaAZoCWgPQwhqos9HGfHuv5SGlFKUaBVLMmgWR0CnZCW8h9srdX2UKGgGaAloD0MIR1fp7job37+UhpRSlGgVSzJoFkdAp2PqyhSLqHV9lChoBmgJaA9DCI6PFmcMc+O/lIaUUpRoFUsyaBZHQKdjsDVYp2F1fZQoaAZoCWgPQwhGeHsQAnLov5SGlFKUaBVLMmgWR0CnY3Ql8gIQdX2UKGgGaAloD0MIEojX9Qt25b+UhpRSlGgVSzJoFkdAp2U5yCFsYXV9lChoBmgJaA9DCBGOWfYkMOi/lIaUUpRoFUsyaBZHQKdk/tqpLmJ1fZQoaAZoCWgPQwhIcCNli6Tvv5SGlFKUaBVLMmgWR0CnZMQuuievdX2UKGgGaAloD0MIEW+df7ts4b+UhpRSlGgVSzJoFkdAp2SIIWxhUnV9lChoBmgJaA9DCEvLSL2ncue/lIaUUpRoFUsyaBZHQKdmRoDgZTB1fZQoaAZoCWgPQwgAjdKlf0nhv5SGlFKUaBVLMmgWR0CnZguoxYaHdX2UKGgGaAloD0MIJ2vUQzQ65b+UhpRSlGgVSzJoFkdAp2XREfDDTHV9lChoBmgJaA9DCJnVO9wODei/lIaUUpRoFUsyaBZHQKdllRsMy8B1fZQoaAZoCWgPQwi5T44CRMHhv5SGlFKUaBVLMmgWR0CnZ1UjC53DdX2UKGgGaAloD0MI9x+ZDp2e3L+UhpRSlGgVSzJoFkdAp2caKziS73V9lChoBmgJaA9DCBsOSwM/Kum/lIaUUpRoFUsyaBZHQKdm32kBS1p1fZQoaAZoCWgPQwiBPSZSmk3hv5SGlFKUaBVLMmgWR0CnZqOc2BJ7dX2UKGgGaAloD0MIyXa+nxqv47+UhpRSlGgVSzJoFkdAp2h1V7x/eHV9lChoBmgJaA9DCMZpiCr8meG/lIaUUpRoFUsyaBZHQKdoOp3os7N1fZQoaAZoCWgPQwhWurvOhvzkv5SGlFKUaBVLMmgWR0CnaAAdOqNqdX2UKGgGaAloD0MIPfIHA8894L+UhpRSlGgVSzJoFkdAp2fEU21lXnV9lChoBmgJaA9DCIIBhA8lWum/lIaUUpRoFUsyaBZHQKdpgxmkFfR1fZQoaAZoCWgPQwhtGttrQe/xv5SGlFKUaBVLMmgWR0CnaUgNwzcidX2UKGgGaAloD0MIrwW9N4aA7L+UhpRSlGgVSzJoFkdAp2kNa0QbuXV9lChoBmgJaA9DCHIXYYpyaeO/lIaUUpRoFUsyaBZHQKdo0XtShrZ1fZQoaAZoCWgPQwh9l1KXjOPmv5SGlFKUaBVLMmgWR0CnapHuAqd6dX2UKGgGaAloD0MIHxDoTNpU4b+UhpRSlGgVSzJoFkdAp2pXAGjbjHV9lChoBmgJaA9DCDuL3qmAe+C/lIaUUpRoFUsyaBZHQKdqHGLDQ7d1fZQoaAZoCWgPQwheu7ThsLTgv5SGlFKUaBVLMmgWR0CnaeBzV+ZxdX2UKGgGaAloD0MIt3u5T46C5b+UhpRSlGgVSzJoFkdAp2uomG/N7nV9lChoBmgJaA9DCNE/wcWKmuO/lIaUUpRoFUsyaBZHQKdrbd1uBMB1fZQoaAZoCWgPQwgddAmH3mLgv5SGlFKUaBVLMmgWR0CnazM8gZCOdX2UKGgGaAloD0MIUOPe/IYJ4L+UhpRSlGgVSzJoFkdAp2r3YQJ5V3V9lChoBmgJaA9DCBNIiV3bW+G/lIaUUpRoFUsyaBZHQKdsrg/C66J1fZQoaAZoCWgPQwj5vOKpRxrmv5SGlFKUaBVLMmgWR0CnbHMdkrf+dX2UKGgGaAloD0MICg+aXffW47+UhpRSlGgVSzJoFkdAp2w4fyPMjnV9lChoBmgJaA9DCH4dOGdE6e2/lIaUUpRoFUsyaBZHQKdr/I8yN4t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (341 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.6783795527182519, "std_reward": 0.11403307721215701, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T17:24:53.426151"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3125f76192d397be9ae4ab07ea1b8b2b3f4a607f9d485f9bfd07f8876403a79d
|
3 |
+
size 3056
|