jonghyunlee commited on
Commit
8d08d2f
·
1 Parent(s): 2d62678

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -1
README.md CHANGED
@@ -4,4 +4,34 @@ metrics:
4
  - accuracy
5
  tags:
6
  - chemistry
7
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  - accuracy
5
  tags:
6
  - chemistry
7
+ ---
8
+ # Molecular BERT Pretrained Using ChEMBL Database
9
+
10
+ This model has been pretrained based on the methodology outlined in the paper [Pushing the Boundaries of Molecular Property Prediction for Drug Discovery with Multitask Learning BERT Enhanced by SMILES Enumeration](https://spj.science.org/doi/10.34133/research.0004). While the original model was initially trained using custom code, it has been adapted for use within the Hugging Face Transformers framework in this project.
11
+
12
+ ## Model Details
13
+ The model architecture utilized is based on BERT. Here are the key configuration details:
14
+
15
+ ```
16
+ BertConfig(
17
+ vocab_size=len(tokenizer_pretrained.vocab),
18
+ hidden_size=256,
19
+ num_hidden_layers=8,
20
+ num_attention_heads=8,
21
+ intermediate_size=1024,
22
+ hidden_act="gelu",
23
+ hidden_dropout_prob=0.1,
24
+ attention_probs_dropout_prob=0.1,
25
+ max_position_embeddings=max_seq_len,
26
+ type_vocab_size=1,
27
+ pad_token_id=tokenizer_pretrained.vocab["[PAD]"],
28
+ position_embedding_type="absolute"
29
+ )
30
+ ```
31
+
32
+ ## Pretraining Database
33
+ The model was pretrained using data from the ChEMBL database, specifically version 33. You can download the database from [ChEMBL](https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/).
34
+
35
+ ## Performance
36
+ The accuracy score achieved by the pretrained model is 0.9672. The testing dataset used for evaluation constitutes 10% of the ChEMBL dataset.
37
+