jordiclive
commited on
Upload handler.py
Browse files- handler.py +73 -0
handler.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
5 |
+
|
6 |
+
dtype = torch.bfloat16
|
7 |
+
|
8 |
+
|
9 |
+
class EndpointHandler:
|
10 |
+
def __init__(self, path=""):
|
11 |
+
# load the model
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
13 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
path, device_map="auto", torch_dtype=dtype
|
15 |
+
)
|
16 |
+
if self.tokenizer.pad_token is None:
|
17 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
18 |
+
# create inference pipeline
|
19 |
+
self.pipeline = pipeline(
|
20 |
+
"text-generation", model=self.model, tokenizer=self.tokenizer
|
21 |
+
)
|
22 |
+
self.ce = torch.nn.CrossEntropyLoss(
|
23 |
+
ignore_index=self.tokenizer.pad_token_id, reduction="none"
|
24 |
+
)
|
25 |
+
|
26 |
+
def compute_log_likelihood(self, lm_logits, input_ids):
|
27 |
+
predictions = lm_logits[..., :-1, :].contiguous()
|
28 |
+
target_ids = input_ids[..., 1:].contiguous()
|
29 |
+
|
30 |
+
ce_loss = self.ce(
|
31 |
+
predictions.view(-1, predictions.size(-1)),
|
32 |
+
target_ids.view(-1),
|
33 |
+
)
|
34 |
+
return -ce_loss.view_as(target_ids)[0]
|
35 |
+
|
36 |
+
def __call__(self, data: Any):
|
37 |
+
inputs = data.pop("inputs", data)
|
38 |
+
parameters = data.pop("parameters", None)
|
39 |
+
if parameters.get("no_generation", False):
|
40 |
+
input_tokens = self.tokenizer.batch_encode_plus(
|
41 |
+
[inputs], return_tensors="pt", padding=False
|
42 |
+
)
|
43 |
+
for t in input_tokens:
|
44 |
+
if torch.is_tensor(input_tokens[t]):
|
45 |
+
input_tokens[t] = input_tokens[t].to(torch.cuda.current_device())
|
46 |
+
|
47 |
+
logits = self.model(
|
48 |
+
input_ids=input_tokens["input_ids"],
|
49 |
+
attention_mask=input_tokens["attention_mask"],
|
50 |
+
)[0]
|
51 |
+
log_likelihood = self.compute_log_likelihood(
|
52 |
+
logits, input_tokens["input_ids"]
|
53 |
+
)
|
54 |
+
return (logits, log_likelihood)
|
55 |
+
if parameters is not None:
|
56 |
+
prediction = self.pipeline(inputs, **parameters)
|
57 |
+
else:
|
58 |
+
prediction = self.pipeline(inputs)
|
59 |
+
return prediction
|
60 |
+
|
61 |
+
|
62 |
+
# if __name__ == "__main__":
|
63 |
+
# model = EndpointHandler("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
64 |
+
|
65 |
+
# data = {
|
66 |
+
# "inputs": "Can you please let us know more details about your ",
|
67 |
+
# "parameters": {
|
68 |
+
# "no_generation": True,
|
69 |
+
# # "function_to_apply": "none",
|
70 |
+
# # "return_text": False,
|
71 |
+
# },
|
72 |
+
# }
|
73 |
+
# x = model(data)
|