File size: 14,078 Bytes
70a93aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
base_model: WinKawaks/vit-tiny-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit-base_tobacco-tiny_tobacco3482_kd_NKD_t1.0_g1.5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit-base_tobacco-tiny_tobacco3482_kd_NKD_t1.0_g1.5

This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1418
- Accuracy: 0.84
- Brier Loss: 0.2718
- Nll: 0.9778
- F1 Micro: 0.8400
- F1 Macro: 0.8296
- Ece: 0.1553
- Aurc: 0.0479

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll    | F1 Micro | F1 Macro | Ece    | Aurc   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log        | 1.0   | 7    | 5.6749          | 0.2      | 0.9075     | 8.1551 | 0.2000   | 0.1380   | 0.2949 | 0.8075 |
| No log        | 2.0   | 14   | 5.1602          | 0.15     | 0.8781     | 7.4212 | 0.15     | 0.1415   | 0.2402 | 0.7606 |
| No log        | 3.0   | 21   | 4.4947          | 0.46     | 0.7066     | 2.8419 | 0.46     | 0.4202   | 0.3230 | 0.3244 |
| No log        | 4.0   | 28   | 3.9789          | 0.555    | 0.5827     | 1.6986 | 0.555    | 0.5525   | 0.2796 | 0.2218 |
| No log        | 5.0   | 35   | 3.6991          | 0.65     | 0.4828     | 1.7197 | 0.65     | 0.6491   | 0.2315 | 0.1491 |
| No log        | 6.0   | 42   | 3.6495          | 0.68     | 0.4691     | 1.8258 | 0.68     | 0.6586   | 0.2555 | 0.1358 |
| No log        | 7.0   | 49   | 3.3912          | 0.75     | 0.3899     | 1.8385 | 0.75     | 0.7276   | 0.2237 | 0.0920 |
| No log        | 8.0   | 56   | 3.3055          | 0.71     | 0.3792     | 1.5754 | 0.7100   | 0.6922   | 0.2130 | 0.1023 |
| No log        | 9.0   | 63   | 3.3535          | 0.72     | 0.3836     | 1.7076 | 0.72     | 0.7195   | 0.2015 | 0.0978 |
| No log        | 10.0  | 70   | 3.1877          | 0.785    | 0.3190     | 1.5736 | 0.785    | 0.7582   | 0.1905 | 0.0693 |
| No log        | 11.0  | 77   | 3.5578          | 0.72     | 0.3812     | 2.2613 | 0.72     | 0.7241   | 0.1684 | 0.0846 |
| No log        | 12.0  | 84   | 3.3589          | 0.775    | 0.3389     | 1.3228 | 0.775    | 0.7540   | 0.1665 | 0.0764 |
| No log        | 13.0  | 91   | 3.1097          | 0.805    | 0.2856     | 1.4183 | 0.805    | 0.7929   | 0.1603 | 0.0484 |
| No log        | 14.0  | 98   | 3.2661          | 0.815    | 0.3146     | 1.9097 | 0.815    | 0.8066   | 0.1753 | 0.0636 |
| No log        | 15.0  | 105  | 3.3637          | 0.755    | 0.3361     | 1.5166 | 0.755    | 0.7492   | 0.1804 | 0.0720 |
| No log        | 16.0  | 112  | 3.1495          | 0.8      | 0.2994     | 1.4586 | 0.8000   | 0.7926   | 0.1714 | 0.0604 |
| No log        | 17.0  | 119  | 3.1573          | 0.8      | 0.2941     | 1.6755 | 0.8000   | 0.7899   | 0.1545 | 0.0577 |
| No log        | 18.0  | 126  | 3.4445          | 0.77     | 0.3416     | 1.4075 | 0.7700   | 0.7503   | 0.1620 | 0.0807 |
| No log        | 19.0  | 133  | 3.1292          | 0.805    | 0.2816     | 1.3835 | 0.805    | 0.7815   | 0.1768 | 0.0526 |
| No log        | 20.0  | 140  | 3.4253          | 0.75     | 0.3459     | 2.0430 | 0.75     | 0.7591   | 0.1697 | 0.0706 |
| No log        | 21.0  | 147  | 3.1645          | 0.81     | 0.3000     | 1.7363 | 0.81     | 0.8113   | 0.1711 | 0.0614 |
| No log        | 22.0  | 154  | 3.0823          | 0.815    | 0.2791     | 1.5997 | 0.815    | 0.8020   | 0.1417 | 0.0556 |
| No log        | 23.0  | 161  | 2.9898          | 0.83     | 0.2521     | 1.4274 | 0.83     | 0.8189   | 0.1589 | 0.0434 |
| No log        | 24.0  | 168  | 3.0915          | 0.83     | 0.2770     | 1.3516 | 0.83     | 0.8173   | 0.1495 | 0.0538 |
| No log        | 25.0  | 175  | 3.0405          | 0.825    | 0.2621     | 1.5191 | 0.825    | 0.8048   | 0.1329 | 0.0494 |
| No log        | 26.0  | 182  | 3.0621          | 0.815    | 0.2735     | 1.0698 | 0.815    | 0.7955   | 0.1617 | 0.0522 |
| No log        | 27.0  | 189  | 3.0228          | 0.835    | 0.2650     | 1.4235 | 0.835    | 0.8315   | 0.1565 | 0.0502 |
| No log        | 28.0  | 196  | 3.0677          | 0.82     | 0.2778     | 1.5299 | 0.82     | 0.8165   | 0.1660 | 0.0557 |
| No log        | 29.0  | 203  | 3.0272          | 0.825    | 0.2699     | 1.4726 | 0.825    | 0.8204   | 0.1643 | 0.0491 |
| No log        | 30.0  | 210  | 3.1090          | 0.815    | 0.2892     | 1.3258 | 0.815    | 0.8026   | 0.1585 | 0.0536 |
| No log        | 31.0  | 217  | 3.1069          | 0.81     | 0.2866     | 1.5638 | 0.81     | 0.8050   | 0.1473 | 0.0557 |
| No log        | 32.0  | 224  | 3.0374          | 0.815    | 0.2765     | 1.2895 | 0.815    | 0.8045   | 0.1476 | 0.0527 |
| No log        | 33.0  | 231  | 3.0503          | 0.815    | 0.2750     | 1.3113 | 0.815    | 0.7975   | 0.1531 | 0.0517 |
| No log        | 34.0  | 238  | 2.9852          | 0.82     | 0.2613     | 1.4575 | 0.82     | 0.8110   | 0.1600 | 0.0448 |
| No log        | 35.0  | 245  | 3.0437          | 0.83     | 0.2724     | 1.3491 | 0.83     | 0.8205   | 0.1622 | 0.0571 |
| No log        | 36.0  | 252  | 3.0098          | 0.82     | 0.2717     | 1.2671 | 0.82     | 0.8055   | 0.1567 | 0.0519 |
| No log        | 37.0  | 259  | 3.0025          | 0.845    | 0.2599     | 1.2628 | 0.845    | 0.8255   | 0.1342 | 0.0481 |
| No log        | 38.0  | 266  | 3.1854          | 0.805    | 0.3015     | 1.2550 | 0.805    | 0.7956   | 0.1560 | 0.0601 |
| No log        | 39.0  | 273  | 3.0704          | 0.82     | 0.2793     | 1.2393 | 0.82     | 0.8057   | 0.1566 | 0.0557 |
| No log        | 40.0  | 280  | 3.0739          | 0.825    | 0.2842     | 1.2701 | 0.825    | 0.8169   | 0.1371 | 0.0513 |
| No log        | 41.0  | 287  | 3.0465          | 0.835    | 0.2747     | 1.2598 | 0.835    | 0.8302   | 0.1449 | 0.0538 |
| No log        | 42.0  | 294  | 3.0691          | 0.825    | 0.2773     | 1.1796 | 0.825    | 0.8137   | 0.1372 | 0.0511 |
| No log        | 43.0  | 301  | 3.0734          | 0.84     | 0.2732     | 1.1765 | 0.8400   | 0.8282   | 0.1564 | 0.0565 |
| No log        | 44.0  | 308  | 3.0262          | 0.845    | 0.2622     | 1.2152 | 0.845    | 0.8306   | 0.1457 | 0.0541 |
| No log        | 45.0  | 315  | 3.0610          | 0.835    | 0.2727     | 1.2249 | 0.835    | 0.8261   | 0.1606 | 0.0544 |
| No log        | 46.0  | 322  | 3.0358          | 0.84     | 0.2767     | 1.1020 | 0.8400   | 0.8323   | 0.1416 | 0.0527 |
| No log        | 47.0  | 329  | 2.9893          | 0.835    | 0.2650     | 1.1536 | 0.835    | 0.8252   | 0.1386 | 0.0493 |
| No log        | 48.0  | 336  | 3.0498          | 0.84     | 0.2726     | 1.1253 | 0.8400   | 0.8320   | 0.1302 | 0.0535 |
| No log        | 49.0  | 343  | 2.9816          | 0.845    | 0.2585     | 1.2068 | 0.845    | 0.8355   | 0.1455 | 0.0451 |
| No log        | 50.0  | 350  | 3.0431          | 0.835    | 0.2686     | 1.0596 | 0.835    | 0.8238   | 0.1542 | 0.0540 |
| No log        | 51.0  | 357  | 3.0200          | 0.835    | 0.2639     | 1.1806 | 0.835    | 0.8290   | 0.1434 | 0.0501 |
| No log        | 52.0  | 364  | 3.0217          | 0.845    | 0.2664     | 1.0846 | 0.845    | 0.8324   | 0.1671 | 0.0503 |
| No log        | 53.0  | 371  | 3.0255          | 0.84     | 0.2649     | 1.1803 | 0.8400   | 0.8318   | 0.1350 | 0.0488 |
| No log        | 54.0  | 378  | 3.0069          | 0.835    | 0.2616     | 1.2057 | 0.835    | 0.8190   | 0.1284 | 0.0496 |
| No log        | 55.0  | 385  | 3.0609          | 0.815    | 0.2746     | 1.0378 | 0.815    | 0.7970   | 0.1422 | 0.0490 |
| No log        | 56.0  | 392  | 3.0111          | 0.84     | 0.2622     | 1.1806 | 0.8400   | 0.8341   | 0.1428 | 0.0513 |
| No log        | 57.0  | 399  | 3.0050          | 0.84     | 0.2643     | 1.1898 | 0.8400   | 0.8299   | 0.1452 | 0.0494 |
| No log        | 58.0  | 406  | 3.0426          | 0.84     | 0.2662     | 1.0337 | 0.8400   | 0.8307   | 0.1397 | 0.0514 |
| No log        | 59.0  | 413  | 3.0427          | 0.835    | 0.2682     | 1.0309 | 0.835    | 0.8247   | 0.1453 | 0.0491 |
| No log        | 60.0  | 420  | 3.0449          | 0.83     | 0.2744     | 1.0039 | 0.83     | 0.8141   | 0.1436 | 0.0484 |
| No log        | 61.0  | 427  | 3.0524          | 0.83     | 0.2729     | 1.1480 | 0.83     | 0.8162   | 0.1454 | 0.0477 |
| No log        | 62.0  | 434  | 3.0290          | 0.835    | 0.2610     | 1.1757 | 0.835    | 0.8264   | 0.1476 | 0.0506 |
| No log        | 63.0  | 441  | 3.0574          | 0.83     | 0.2712     | 1.0242 | 0.83     | 0.8161   | 0.1464 | 0.0485 |
| No log        | 64.0  | 448  | 3.0436          | 0.835    | 0.2684     | 1.1326 | 0.835    | 0.8267   | 0.1417 | 0.0470 |
| No log        | 65.0  | 455  | 3.0170          | 0.84     | 0.2610     | 1.1095 | 0.8400   | 0.8289   | 0.1520 | 0.0492 |
| No log        | 66.0  | 462  | 3.0176          | 0.835    | 0.2623     | 1.1140 | 0.835    | 0.8225   | 0.1262 | 0.0459 |
| No log        | 67.0  | 469  | 3.0712          | 0.84     | 0.2735     | 1.0884 | 0.8400   | 0.8296   | 0.1421 | 0.0516 |
| No log        | 68.0  | 476  | 3.0258          | 0.84     | 0.2670     | 1.1388 | 0.8400   | 0.8279   | 0.1478 | 0.0461 |
| No log        | 69.0  | 483  | 3.0838          | 0.835    | 0.2707     | 1.0937 | 0.835    | 0.8232   | 0.1425 | 0.0477 |
| No log        | 70.0  | 490  | 3.1076          | 0.82     | 0.2819     | 1.0030 | 0.82     | 0.7998   | 0.1507 | 0.0480 |
| No log        | 71.0  | 497  | 3.0696          | 0.84     | 0.2725     | 1.0175 | 0.8400   | 0.8349   | 0.1567 | 0.0501 |
| 2.6485        | 72.0  | 504  | 3.0535          | 0.84     | 0.2676     | 1.0079 | 0.8400   | 0.8253   | 0.1351 | 0.0477 |
| 2.6485        | 73.0  | 511  | 3.0326          | 0.83     | 0.2667     | 0.9792 | 0.83     | 0.8093   | 0.1334 | 0.0464 |
| 2.6485        | 74.0  | 518  | 3.0271          | 0.835    | 0.2616     | 1.0865 | 0.835    | 0.8193   | 0.1223 | 0.0454 |
| 2.6485        | 75.0  | 525  | 3.0894          | 0.83     | 0.2732     | 0.9764 | 0.83     | 0.8123   | 0.1446 | 0.0489 |
| 2.6485        | 76.0  | 532  | 3.0905          | 0.835    | 0.2730     | 1.0736 | 0.835    | 0.8232   | 0.1578 | 0.0485 |
| 2.6485        | 77.0  | 539  | 3.0507          | 0.84     | 0.2646     | 1.0716 | 0.8400   | 0.8279   | 0.1424 | 0.0469 |
| 2.6485        | 78.0  | 546  | 3.0981          | 0.845    | 0.2712     | 0.9916 | 0.845    | 0.8324   | 0.1452 | 0.0508 |
| 2.6485        | 79.0  | 553  | 3.0820          | 0.84     | 0.2728     | 0.9791 | 0.8400   | 0.8296   | 0.1403 | 0.0473 |
| 2.6485        | 80.0  | 560  | 3.0978          | 0.84     | 0.2733     | 0.9864 | 0.8400   | 0.8296   | 0.1480 | 0.0485 |
| 2.6485        | 81.0  | 567  | 3.0936          | 0.84     | 0.2716     | 0.9955 | 0.8400   | 0.8296   | 0.1483 | 0.0474 |
| 2.6485        | 82.0  | 574  | 3.0937          | 0.845    | 0.2685     | 0.9875 | 0.845    | 0.8324   | 0.1459 | 0.0486 |
| 2.6485        | 83.0  | 581  | 3.0940          | 0.84     | 0.2719     | 0.9863 | 0.8400   | 0.8296   | 0.1481 | 0.0470 |
| 2.6485        | 84.0  | 588  | 3.0745          | 0.84     | 0.2656     | 1.0795 | 0.8400   | 0.8323   | 0.1460 | 0.0476 |
| 2.6485        | 85.0  | 595  | 3.1089          | 0.845    | 0.2681     | 1.0050 | 0.845    | 0.8324   | 0.1568 | 0.0492 |
| 2.6485        | 86.0  | 602  | 3.0880          | 0.84     | 0.2695     | 1.0607 | 0.8400   | 0.8296   | 0.1409 | 0.0474 |
| 2.6485        | 87.0  | 609  | 3.0848          | 0.84     | 0.2666     | 0.9996 | 0.8400   | 0.8296   | 0.1425 | 0.0470 |
| 2.6485        | 88.0  | 616  | 3.1144          | 0.84     | 0.2682     | 0.9937 | 0.8400   | 0.8296   | 0.1380 | 0.0482 |
| 2.6485        | 89.0  | 623  | 3.1316          | 0.84     | 0.2711     | 0.9884 | 0.8400   | 0.8296   | 0.1484 | 0.0490 |
| 2.6485        | 90.0  | 630  | 3.1312          | 0.84     | 0.2726     | 0.9732 | 0.8400   | 0.8296   | 0.1525 | 0.0488 |
| 2.6485        | 91.0  | 637  | 3.1312          | 0.84     | 0.2723     | 0.9794 | 0.8400   | 0.8296   | 0.1475 | 0.0481 |
| 2.6485        | 92.0  | 644  | 3.1426          | 0.84     | 0.2731     | 0.9728 | 0.8400   | 0.8296   | 0.1478 | 0.0491 |
| 2.6485        | 93.0  | 651  | 3.1351          | 0.84     | 0.2709     | 0.9741 | 0.8400   | 0.8296   | 0.1438 | 0.0483 |
| 2.6485        | 94.0  | 658  | 3.1390          | 0.84     | 0.2716     | 0.9764 | 0.8400   | 0.8296   | 0.1576 | 0.0483 |
| 2.6485        | 95.0  | 665  | 3.1366          | 0.84     | 0.2711     | 0.9795 | 0.8400   | 0.8296   | 0.1480 | 0.0484 |
| 2.6485        | 96.0  | 672  | 3.1337          | 0.84     | 0.2710     | 0.9828 | 0.8400   | 0.8296   | 0.1475 | 0.0478 |
| 2.6485        | 97.0  | 679  | 3.1431          | 0.84     | 0.2723     | 0.9767 | 0.8400   | 0.8296   | 0.1587 | 0.0480 |
| 2.6485        | 98.0  | 686  | 3.1388          | 0.84     | 0.2713     | 0.9808 | 0.8400   | 0.8296   | 0.1476 | 0.0480 |
| 2.6485        | 99.0  | 693  | 3.1420          | 0.84     | 0.2718     | 0.9778 | 0.8400   | 0.8296   | 0.1560 | 0.0480 |
| 2.6485        | 100.0 | 700  | 3.1418          | 0.84     | 0.2718     | 0.9778 | 0.8400   | 0.8296   | 0.1553 | 0.0479 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1