File size: 14,053 Bytes
79cab7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
base_model: WinKawaks/vit-tiny-patch16-224
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dit-base_tobacco-tiny_tobacco3482_simkd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit-base_tobacco-tiny_tobacco3482_simkd

This model is a fine-tuned version of [WinKawaks/vit-tiny-patch16-224](https://huggingface.co/WinKawaks/vit-tiny-patch16-224) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7298
- Accuracy: 0.8
- Brier Loss: 0.3356
- Nll: 1.1950
- F1 Micro: 0.8000
- F1 Macro: 0.7677
- Ece: 0.2868
- Aurc: 0.0614

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll    | F1 Micro | F1 Macro | Ece    | Aurc   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log        | 1.0   | 50   | 1.0044          | 0.11     | 0.8970     | 5.3755 | 0.11     | 0.0297   | 0.1810 | 0.9082 |
| No log        | 2.0   | 100  | 0.9997          | 0.27     | 0.8946     | 5.6759 | 0.27     | 0.1038   | 0.2752 | 0.7229 |
| No log        | 3.0   | 150  | 0.9946          | 0.345    | 0.8902     | 4.6234 | 0.345    | 0.1969   | 0.3377 | 0.6577 |
| No log        | 4.0   | 200  | 0.9814          | 0.4      | 0.8686     | 3.0912 | 0.4000   | 0.2605   | 0.3687 | 0.3808 |
| No log        | 5.0   | 250  | 0.9618          | 0.56     | 0.8277     | 2.9065 | 0.56     | 0.4439   | 0.4769 | 0.2239 |
| No log        | 6.0   | 300  | 0.9225          | 0.58     | 0.7429     | 2.5647 | 0.58     | 0.4408   | 0.4561 | 0.1944 |
| No log        | 7.0   | 350  | 0.8843          | 0.705    | 0.6414     | 2.4145 | 0.705    | 0.5531   | 0.4493 | 0.1261 |
| No log        | 8.0   | 400  | 0.8627          | 0.685    | 0.5773     | 2.4171 | 0.685    | 0.5755   | 0.3710 | 0.1378 |
| No log        | 9.0   | 450  | 0.8252          | 0.73     | 0.5158     | 1.6133 | 0.7300   | 0.6403   | 0.3706 | 0.1066 |
| 0.9306        | 10.0  | 500  | 0.8164          | 0.74     | 0.4861     | 1.9299 | 0.74     | 0.6672   | 0.3352 | 0.1090 |
| 0.9306        | 11.0  | 550  | 0.8350          | 0.67     | 0.5078     | 2.0291 | 0.67     | 0.6083   | 0.3271 | 0.1514 |
| 0.9306        | 12.0  | 600  | 0.8089          | 0.695    | 0.4680     | 1.6726 | 0.695    | 0.6065   | 0.3049 | 0.1040 |
| 0.9306        | 13.0  | 650  | 0.7847          | 0.78     | 0.4097     | 1.3710 | 0.78     | 0.7067   | 0.3090 | 0.0825 |
| 0.9306        | 14.0  | 700  | 0.7793          | 0.8      | 0.3952     | 1.4382 | 0.8000   | 0.7351   | 0.3189 | 0.0823 |
| 0.9306        | 15.0  | 750  | 0.7756          | 0.775    | 0.3979     | 1.2640 | 0.775    | 0.6997   | 0.2950 | 0.0835 |
| 0.9306        | 16.0  | 800  | 0.7888          | 0.765    | 0.3927     | 1.2499 | 0.765    | 0.6894   | 0.3175 | 0.0719 |
| 0.9306        | 17.0  | 850  | 0.7596          | 0.795    | 0.3603     | 1.1834 | 0.795    | 0.7250   | 0.2930 | 0.0673 |
| 0.9306        | 18.0  | 900  | 0.7581          | 0.795    | 0.3580     | 1.1902 | 0.795    | 0.7241   | 0.3104 | 0.0665 |
| 0.9306        | 19.0  | 950  | 0.7546          | 0.81     | 0.3547     | 1.1055 | 0.81     | 0.7583   | 0.3024 | 0.0621 |
| 0.7329        | 20.0  | 1000 | 0.7520          | 0.81     | 0.3547     | 1.1284 | 0.81     | 0.7533   | 0.3209 | 0.0581 |
| 0.7329        | 21.0  | 1050 | 0.7669          | 0.775    | 0.3906     | 1.3812 | 0.775    | 0.7502   | 0.3212 | 0.0794 |
| 0.7329        | 22.0  | 1100 | 0.7532          | 0.81     | 0.3591     | 1.0982 | 0.81     | 0.7836   | 0.3035 | 0.0708 |
| 0.7329        | 23.0  | 1150 | 0.7519          | 0.805    | 0.3643     | 1.0628 | 0.805    | 0.7742   | 0.2813 | 0.0732 |
| 0.7329        | 24.0  | 1200 | 0.7494          | 0.795    | 0.3614     | 1.1123 | 0.795    | 0.7618   | 0.2988 | 0.0699 |
| 0.7329        | 25.0  | 1250 | 0.7517          | 0.79     | 0.3696     | 1.0703 | 0.79     | 0.7606   | 0.3081 | 0.0800 |
| 0.7329        | 26.0  | 1300 | 0.7513          | 0.795    | 0.3629     | 1.1020 | 0.795    | 0.7769   | 0.2797 | 0.0722 |
| 0.7329        | 27.0  | 1350 | 0.7485          | 0.795    | 0.3552     | 1.0352 | 0.795    | 0.7671   | 0.2678 | 0.0684 |
| 0.7329        | 28.0  | 1400 | 0.7442          | 0.805    | 0.3471     | 1.0956 | 0.805    | 0.7706   | 0.2807 | 0.0630 |
| 0.7329        | 29.0  | 1450 | 0.7473          | 0.795    | 0.3592     | 1.1204 | 0.795    | 0.7685   | 0.2897 | 0.0722 |
| 0.6917        | 30.0  | 1500 | 0.7449          | 0.815    | 0.3482     | 1.0584 | 0.815    | 0.7862   | 0.2949 | 0.0629 |
| 0.6917        | 31.0  | 1550 | 0.7443          | 0.8      | 0.3512     | 1.1010 | 0.8000   | 0.7770   | 0.2954 | 0.0622 |
| 0.6917        | 32.0  | 1600 | 0.7454          | 0.785    | 0.3543     | 1.0994 | 0.785    | 0.7631   | 0.2957 | 0.0639 |
| 0.6917        | 33.0  | 1650 | 0.7421          | 0.815    | 0.3449     | 1.1826 | 0.815    | 0.7853   | 0.2996 | 0.0592 |
| 0.6917        | 34.0  | 1700 | 0.7454          | 0.79     | 0.3559     | 1.1000 | 0.79     | 0.7597   | 0.2964 | 0.0659 |
| 0.6917        | 35.0  | 1750 | 0.7418          | 0.815    | 0.3477     | 1.1616 | 0.815    | 0.7867   | 0.3133 | 0.0617 |
| 0.6917        | 36.0  | 1800 | 0.7425          | 0.815    | 0.3464     | 1.1274 | 0.815    | 0.7949   | 0.3173 | 0.0578 |
| 0.6917        | 37.0  | 1850 | 0.7421          | 0.8      | 0.3448     | 1.1909 | 0.8000   | 0.7732   | 0.2900 | 0.0639 |
| 0.6917        | 38.0  | 1900 | 0.7415          | 0.795    | 0.3471     | 1.1816 | 0.795    | 0.7594   | 0.2860 | 0.0655 |
| 0.6917        | 39.0  | 1950 | 0.7405          | 0.78     | 0.3502     | 1.1084 | 0.78     | 0.7491   | 0.2709 | 0.0650 |
| 0.6764        | 40.0  | 2000 | 0.7398          | 0.81     | 0.3457     | 1.1746 | 0.81     | 0.7797   | 0.2973 | 0.0603 |
| 0.6764        | 41.0  | 2050 | 0.7394          | 0.805    | 0.3437     | 1.1201 | 0.805    | 0.7764   | 0.2915 | 0.0626 |
| 0.6764        | 42.0  | 2100 | 0.7380          | 0.81     | 0.3420     | 1.0987 | 0.81     | 0.7861   | 0.2815 | 0.0583 |
| 0.6764        | 43.0  | 2150 | 0.7386          | 0.8      | 0.3437     | 1.1855 | 0.8000   | 0.7667   | 0.2804 | 0.0617 |
| 0.6764        | 44.0  | 2200 | 0.7398          | 0.795    | 0.3437     | 1.1138 | 0.795    | 0.7660   | 0.2719 | 0.0614 |
| 0.6764        | 45.0  | 2250 | 0.7384          | 0.805    | 0.3441     | 1.1100 | 0.805    | 0.7699   | 0.3065 | 0.0628 |
| 0.6764        | 46.0  | 2300 | 0.7389          | 0.79     | 0.3488     | 1.1079 | 0.79     | 0.7552   | 0.2615 | 0.0647 |
| 0.6764        | 47.0  | 2350 | 0.7368          | 0.8      | 0.3440     | 1.1095 | 0.8000   | 0.7698   | 0.2908 | 0.0624 |
| 0.6764        | 48.0  | 2400 | 0.7365          | 0.8      | 0.3452     | 1.0995 | 0.8000   | 0.7739   | 0.2838 | 0.0645 |
| 0.6764        | 49.0  | 2450 | 0.7365          | 0.8      | 0.3367     | 1.0442 | 0.8000   | 0.7712   | 0.2735 | 0.0585 |
| 0.6662        | 50.0  | 2500 | 0.7342          | 0.815    | 0.3379     | 1.1009 | 0.815    | 0.7815   | 0.2964 | 0.0584 |
| 0.6662        | 51.0  | 2550 | 0.7340          | 0.805    | 0.3358     | 1.0985 | 0.805    | 0.7723   | 0.2635 | 0.0593 |
| 0.6662        | 52.0  | 2600 | 0.7370          | 0.8      | 0.3429     | 1.1227 | 0.8000   | 0.7709   | 0.2841 | 0.0603 |
| 0.6662        | 53.0  | 2650 | 0.7325          | 0.81     | 0.3380     | 1.1110 | 0.81     | 0.7790   | 0.3022 | 0.0601 |
| 0.6662        | 54.0  | 2700 | 0.7320          | 0.8      | 0.3363     | 1.0621 | 0.8000   | 0.7647   | 0.2815 | 0.0607 |
| 0.6662        | 55.0  | 2750 | 0.7324          | 0.805    | 0.3321     | 0.9926 | 0.805    | 0.7693   | 0.2972 | 0.0600 |
| 0.6662        | 56.0  | 2800 | 0.7318          | 0.805    | 0.3364     | 1.0537 | 0.805    | 0.7681   | 0.2554 | 0.0612 |
| 0.6662        | 57.0  | 2850 | 0.7311          | 0.82     | 0.3355     | 1.1133 | 0.82     | 0.7862   | 0.2776 | 0.0594 |
| 0.6662        | 58.0  | 2900 | 0.7317          | 0.81     | 0.3331     | 1.0662 | 0.81     | 0.7797   | 0.2600 | 0.0579 |
| 0.6662        | 59.0  | 2950 | 0.7327          | 0.805    | 0.3382     | 1.1876 | 0.805    | 0.7735   | 0.2797 | 0.0621 |
| 0.6577        | 60.0  | 3000 | 0.7322          | 0.8      | 0.3356     | 1.1864 | 0.8000   | 0.7680   | 0.2797 | 0.0612 |
| 0.6577        | 61.0  | 3050 | 0.7327          | 0.795    | 0.3391     | 1.1347 | 0.795    | 0.7614   | 0.2883 | 0.0641 |
| 0.6577        | 62.0  | 3100 | 0.7315          | 0.815    | 0.3364     | 1.1227 | 0.815    | 0.7848   | 0.2681 | 0.0599 |
| 0.6577        | 63.0  | 3150 | 0.7316          | 0.805    | 0.3392     | 1.0608 | 0.805    | 0.7717   | 0.2742 | 0.0632 |
| 0.6577        | 64.0  | 3200 | 0.7313          | 0.82     | 0.3341     | 1.0601 | 0.82     | 0.7878   | 0.2950 | 0.0583 |
| 0.6577        | 65.0  | 3250 | 0.7322          | 0.805    | 0.3388     | 1.1837 | 0.805    | 0.7747   | 0.2806 | 0.0638 |
| 0.6577        | 66.0  | 3300 | 0.7311          | 0.805    | 0.3373     | 1.0157 | 0.805    | 0.7757   | 0.2880 | 0.0629 |
| 0.6577        | 67.0  | 3350 | 0.7310          | 0.805    | 0.3344     | 1.1878 | 0.805    | 0.7766   | 0.2499 | 0.0609 |
| 0.6577        | 68.0  | 3400 | 0.7326          | 0.805    | 0.3391     | 1.0847 | 0.805    | 0.7729   | 0.2824 | 0.0636 |
| 0.6577        | 69.0  | 3450 | 0.7302          | 0.805    | 0.3376     | 1.1932 | 0.805    | 0.7778   | 0.2789 | 0.0617 |
| 0.6528        | 70.0  | 3500 | 0.7305          | 0.81     | 0.3359     | 0.9988 | 0.81     | 0.7787   | 0.2769 | 0.0622 |
| 0.6528        | 71.0  | 3550 | 0.7300          | 0.81     | 0.3328     | 1.0833 | 0.81     | 0.7776   | 0.2914 | 0.0594 |
| 0.6528        | 72.0  | 3600 | 0.7300          | 0.81     | 0.3343     | 1.1426 | 0.81     | 0.7776   | 0.2843 | 0.0594 |
| 0.6528        | 73.0  | 3650 | 0.7285          | 0.805    | 0.3341     | 1.1237 | 0.805    | 0.7701   | 0.2723 | 0.0614 |
| 0.6528        | 74.0  | 3700 | 0.7303          | 0.81     | 0.3368     | 1.1928 | 0.81     | 0.7768   | 0.2926 | 0.0612 |
| 0.6528        | 75.0  | 3750 | 0.7290          | 0.805    | 0.3318     | 1.0669 | 0.805    | 0.7709   | 0.2810 | 0.0603 |
| 0.6528        | 76.0  | 3800 | 0.7316          | 0.8      | 0.3382     | 1.1392 | 0.8000   | 0.7687   | 0.2505 | 0.0636 |
| 0.6528        | 77.0  | 3850 | 0.7284          | 0.8      | 0.3337     | 1.1338 | 0.8000   | 0.7720   | 0.2677 | 0.0610 |
| 0.6528        | 78.0  | 3900 | 0.7303          | 0.805    | 0.3373     | 1.1969 | 0.805    | 0.7729   | 0.2745 | 0.0618 |
| 0.6528        | 79.0  | 3950 | 0.7297          | 0.805    | 0.3369     | 1.1970 | 0.805    | 0.7743   | 0.2731 | 0.0606 |
| 0.6489        | 80.0  | 4000 | 0.7296          | 0.795    | 0.3362     | 1.1328 | 0.795    | 0.7656   | 0.2620 | 0.0627 |
| 0.6489        | 81.0  | 4050 | 0.7295          | 0.805    | 0.3363     | 1.1358 | 0.805    | 0.7726   | 0.2540 | 0.0608 |
| 0.6489        | 82.0  | 4100 | 0.7290          | 0.795    | 0.3341     | 1.1389 | 0.795    | 0.7668   | 0.2661 | 0.0630 |
| 0.6489        | 83.0  | 4150 | 0.7289          | 0.8      | 0.3364     | 1.0597 | 0.8000   | 0.7678   | 0.2838 | 0.0615 |
| 0.6489        | 84.0  | 4200 | 0.7291          | 0.805    | 0.3351     | 1.1277 | 0.805    | 0.7743   | 0.2621 | 0.0608 |
| 0.6489        | 85.0  | 4250 | 0.7297          | 0.795    | 0.3353     | 1.1953 | 0.795    | 0.7668   | 0.2666 | 0.0622 |
| 0.6489        | 86.0  | 4300 | 0.7286          | 0.805    | 0.3339     | 1.1278 | 0.805    | 0.7735   | 0.2668 | 0.0608 |
| 0.6489        | 87.0  | 4350 | 0.7298          | 0.8      | 0.3361     | 1.1423 | 0.8000   | 0.7677   | 0.2613 | 0.0614 |
| 0.6489        | 88.0  | 4400 | 0.7296          | 0.805    | 0.3346     | 1.1927 | 0.805    | 0.7743   | 0.2789 | 0.0612 |
| 0.6489        | 89.0  | 4450 | 0.7299          | 0.8      | 0.3359     | 1.1950 | 0.8000   | 0.7686   | 0.2500 | 0.0613 |
| 0.6462        | 90.0  | 4500 | 0.7297          | 0.805    | 0.3354     | 1.1934 | 0.805    | 0.7743   | 0.2939 | 0.0613 |
| 0.6462        | 91.0  | 4550 | 0.7294          | 0.8      | 0.3353     | 1.1313 | 0.8000   | 0.7685   | 0.2808 | 0.0610 |
| 0.6462        | 92.0  | 4600 | 0.7297          | 0.805    | 0.3356     | 1.1349 | 0.805    | 0.7765   | 0.2668 | 0.0614 |
| 0.6462        | 93.0  | 4650 | 0.7298          | 0.8      | 0.3354     | 1.1954 | 0.8000   | 0.7685   | 0.2700 | 0.0613 |
| 0.6462        | 94.0  | 4700 | 0.7301          | 0.8      | 0.3362     | 1.1951 | 0.8000   | 0.7677   | 0.2722 | 0.0616 |
| 0.6462        | 95.0  | 4750 | 0.7299          | 0.805    | 0.3360     | 1.1957 | 0.805    | 0.7743   | 0.2619 | 0.0614 |
| 0.6462        | 96.0  | 4800 | 0.7299          | 0.805    | 0.3357     | 1.1946 | 0.805    | 0.7743   | 0.2892 | 0.0611 |
| 0.6462        | 97.0  | 4850 | 0.7297          | 0.8      | 0.3355     | 1.1954 | 0.8000   | 0.7686   | 0.2703 | 0.0613 |
| 0.6462        | 98.0  | 4900 | 0.7298          | 0.8      | 0.3359     | 1.1952 | 0.8000   | 0.7677   | 0.2892 | 0.0615 |
| 0.6462        | 99.0  | 4950 | 0.7298          | 0.8      | 0.3357     | 1.1951 | 0.8000   | 0.7677   | 0.2720 | 0.0614 |
| 0.645         | 100.0 | 5000 | 0.7298          | 0.8      | 0.3356     | 1.1950 | 0.8000   | 0.7677   | 0.2868 | 0.0614 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.2.0.dev20231112+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1