update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: dit-tiny_tobacco3482_kd_CEKD_t1.5_a0.7
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# dit-tiny_tobacco3482_kd_CEKD_t1.5_a0.7
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 2.6280
|
19 |
+
- Accuracy: 0.18
|
20 |
+
- Brier Loss: 0.8747
|
21 |
+
- Nll: 6.7569
|
22 |
+
- F1 Micro: 0.18
|
23 |
+
- F1 Macro: 0.0306
|
24 |
+
- Ece: 0.2550
|
25 |
+
- Aurc: 0.8496
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 2e-05
|
45 |
+
- train_batch_size: 16
|
46 |
+
- eval_batch_size: 16
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 16
|
49 |
+
- total_train_batch_size: 256
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 25
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll | F1 Micro | F1 Macro | Ece | Aurc |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:-------:|:--------:|:--------:|:------:|:------:|
|
59 |
+
| No log | 0.96 | 3 | 2.7961 | 0.145 | 0.8999 | 10.1560 | 0.145 | 0.0253 | 0.2221 | 0.8467 |
|
60 |
+
| No log | 1.96 | 6 | 2.7646 | 0.145 | 0.8946 | 10.5828 | 0.145 | 0.0253 | 0.2242 | 0.8475 |
|
61 |
+
| No log | 2.96 | 9 | 2.7185 | 0.155 | 0.8868 | 8.6137 | 0.155 | 0.0501 | 0.2145 | 0.8394 |
|
62 |
+
| No log | 3.96 | 12 | 2.6825 | 0.21 | 0.8808 | 6.5439 | 0.2100 | 0.0613 | 0.2567 | 0.8351 |
|
63 |
+
| No log | 4.96 | 15 | 2.6619 | 0.155 | 0.8778 | 6.7839 | 0.155 | 0.0274 | 0.2346 | 0.8880 |
|
64 |
+
| No log | 5.96 | 18 | 2.6517 | 0.18 | 0.8769 | 7.4578 | 0.18 | 0.0395 | 0.2461 | 0.8571 |
|
65 |
+
| No log | 6.96 | 21 | 2.6450 | 0.18 | 0.8767 | 7.1192 | 0.18 | 0.0308 | 0.2518 | 0.8516 |
|
66 |
+
| No log | 7.96 | 24 | 2.6400 | 0.18 | 0.8766 | 6.9539 | 0.18 | 0.0306 | 0.2472 | 0.8526 |
|
67 |
+
| No log | 8.96 | 27 | 2.6355 | 0.18 | 0.8762 | 6.9109 | 0.18 | 0.0306 | 0.2524 | 0.8527 |
|
68 |
+
| No log | 9.96 | 30 | 2.6332 | 0.18 | 0.8759 | 6.8997 | 0.18 | 0.0306 | 0.2491 | 0.8527 |
|
69 |
+
| No log | 10.96 | 33 | 2.6317 | 0.18 | 0.8757 | 6.8943 | 0.18 | 0.0306 | 0.2529 | 0.8524 |
|
70 |
+
| No log | 11.96 | 36 | 2.6309 | 0.18 | 0.8755 | 6.8287 | 0.18 | 0.0306 | 0.2442 | 0.8523 |
|
71 |
+
| No log | 12.96 | 39 | 2.6304 | 0.18 | 0.8753 | 6.7670 | 0.18 | 0.0306 | 0.2478 | 0.8521 |
|
72 |
+
| No log | 13.96 | 42 | 2.6298 | 0.18 | 0.8752 | 6.7597 | 0.18 | 0.0306 | 0.2433 | 0.8517 |
|
73 |
+
| No log | 14.96 | 45 | 2.6293 | 0.18 | 0.8751 | 6.7590 | 0.18 | 0.0306 | 0.2516 | 0.8513 |
|
74 |
+
| No log | 15.96 | 48 | 2.6290 | 0.18 | 0.8750 | 6.7556 | 0.18 | 0.0306 | 0.2555 | 0.8515 |
|
75 |
+
| No log | 16.96 | 51 | 2.6287 | 0.18 | 0.8750 | 6.7582 | 0.18 | 0.0306 | 0.2557 | 0.8514 |
|
76 |
+
| No log | 17.96 | 54 | 2.6289 | 0.18 | 0.8750 | 6.7556 | 0.18 | 0.0306 | 0.2476 | 0.8509 |
|
77 |
+
| No log | 18.96 | 57 | 2.6289 | 0.18 | 0.8750 | 6.7567 | 0.18 | 0.0306 | 0.2475 | 0.8505 |
|
78 |
+
| No log | 19.96 | 60 | 2.6285 | 0.18 | 0.8748 | 6.7567 | 0.18 | 0.0306 | 0.2433 | 0.8502 |
|
79 |
+
| No log | 20.96 | 63 | 2.6283 | 0.18 | 0.8748 | 6.7577 | 0.18 | 0.0306 | 0.2512 | 0.8500 |
|
80 |
+
| No log | 21.96 | 66 | 2.6281 | 0.18 | 0.8748 | 6.7586 | 0.18 | 0.0306 | 0.2551 | 0.8495 |
|
81 |
+
| No log | 22.96 | 69 | 2.6280 | 0.18 | 0.8747 | 6.7580 | 0.18 | 0.0306 | 0.2550 | 0.8496 |
|
82 |
+
| No log | 23.96 | 72 | 2.6280 | 0.18 | 0.8747 | 6.7573 | 0.18 | 0.0306 | 0.2550 | 0.8496 |
|
83 |
+
| No log | 24.96 | 75 | 2.6280 | 0.18 | 0.8747 | 6.7569 | 0.18 | 0.0306 | 0.2550 | 0.8496 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.26.1
|
89 |
+
- Pytorch 1.13.1.post200
|
90 |
+
- Datasets 2.9.0
|
91 |
+
- Tokenizers 0.13.2
|