josedossantos commited on
Commit
39a8c9d
1 Parent(s): 138885a

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:10K<n<100K
9
+ - loss:ContrastiveLoss
10
+ base_model: sentence-transformers/LaBSE
11
+ widget:
12
+ - source_sentence: Alteração, Código Penal, revogação, crime, desacato.
13
+ sentences:
14
+ - Alteração, Código Penal, aumenta da pena, crime, maus-tratos.
15
+ - Equiparação, doença, Lúpus Eritematoso Sistêmico, deficiência física, deficiência
16
+ intelectual, efeito jurídico.
17
+ - Alteração, Legislação Tributária Federal, dedução, declaração de ajuste anual,
18
+ pessoa física, pagamento, despesa, aluguel, imóvel residencial.
19
+ - source_sentence: Alteração, fixação, jornada de trabalho, psicólogo.
20
+ sentences:
21
+ - "Alteração, lei federal, definição, jornada de trabalho, psicólogo.\r\n\r\n"
22
+ - Ttítulo de capital nacional, Capital Nacional do Guabiju, Guabiju (RS), Rio Grande
23
+ do Sul, título de topônimo.
24
+ - 'Alteração, Lei Antifumo, proibição, comercialização, importação, fornecimento,
25
+ publicidade, cigarro eletrônico. '
26
+ - source_sentence: Criação, Fundo Garantidor, empresa, alimentação.
27
+ sentences:
28
+ - Disciplinamento, auxílio financeiro, União, Estado (ente federado), Distrito
29
+ Federal (Brasil), Município, fomento, exportação.
30
+ - 'Alteração, Lei de Diretrizes e Bases da Educação Nacional (1996), proibição,
31
+ educação à distância, área, saúde. '
32
+ - Alteração, Legislação Tributária Federal, dedução, declaração de ajuste anual,
33
+ pessoa física, pagamento, despesa, aluguel, imóvel residencial.
34
+ - source_sentence: Inclusão, Cerrado, Caatinga, Patrimônio da União.
35
+ sentences:
36
+ - Inclusão, cerrado, caatinga, patrimônio da União.
37
+ - Regulamentação, Programa Nacional de Assistência Estudantil (PNAES), assistência
38
+ estudantil, educação superior.
39
+ - Alteração, Lei Federal, piso salarial, jornada de trabalho, enfermeiro, técnico
40
+ de enfermagem, auxiliar de enfermagem, parteira.
41
+ - source_sentence: Reserva, vaga, estágio, aluno, escola, rede pública.
42
+ sentences:
43
+ - 'Alteração, LDB, aluno, inscrição, Programa Bolsa-Atleta, garantia matrícula escolar,
44
+ escola, proximidade, residência. '
45
+ - 'Título de Capital Nacional, Capital Nacional do Alimento, Marília (SP), São Paulo
46
+ (Estado), Título de Topônimo. '
47
+ - Alteração, Legislação Tributária Federal, dedução, declaração de ajuste anual,
48
+ pessoa física, pagamento, despesa, aluguel, imóvel residencial.
49
+ pipeline_tag: sentence-similarity
50
+ ---
51
+
52
+ # SentenceTransformer based on sentence-transformers/LaBSE
53
+
54
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
55
+
56
+ ## Model Details
57
+
58
+ ### Model Description
59
+ - **Model Type:** Sentence Transformer
60
+ - **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision e34fab64a3011d2176c99545a93d5cbddc9a91b7 -->
61
+ - **Maximum Sequence Length:** 512 tokens
62
+ - **Output Dimensionality:** 768 tokens
63
+ - **Similarity Function:** Cosine Similarity
64
+ <!-- - **Training Dataset:** Unknown -->
65
+ <!-- - **Language:** Unknown -->
66
+ <!-- - **License:** Unknown -->
67
+
68
+ ### Model Sources
69
+
70
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
71
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
72
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
73
+
74
+ ### Full Model Architecture
75
+
76
+ ```
77
+ SentenceTransformer(
78
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
79
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
80
+ )
81
+ ```
82
+
83
+ ## Usage
84
+
85
+ ### Direct Usage (Sentence Transformers)
86
+
87
+ First install the Sentence Transformers library:
88
+
89
+ ```bash
90
+ pip install -U sentence-transformers
91
+ ```
92
+
93
+ Then you can load this model and run inference.
94
+ ```python
95
+ from sentence_transformers import SentenceTransformer
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SentenceTransformer("josedossantos/urf-txtIndexacao-labse")
99
+ # Run inference
100
+ sentences = [
101
+ 'Reserva, vaga, estágio, aluno, escola, rede pública.',
102
+ 'Alteração, LDB, aluno, inscrição, Programa Bolsa-Atleta, garantia matrícula escolar, escola, proximidade, residência. ',
103
+ 'Título de Capital Nacional, Capital Nacional do Alimento, Marília (SP), São Paulo (Estado), Título de Topônimo. ',
104
+ ]
105
+ embeddings = model.encode(sentences)
106
+ print(embeddings.shape)
107
+ # [3, 768]
108
+
109
+ # Get the similarity scores for the embeddings
110
+ similarities = model.similarity(embeddings, embeddings)
111
+ print(similarities.shape)
112
+ # [3, 3]
113
+ ```
114
+
115
+ <!--
116
+ ### Direct Usage (Transformers)
117
+
118
+ <details><summary>Click to see the direct usage in Transformers</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Downstream Usage (Sentence Transformers)
125
+
126
+ You can finetune this model on your own dataset.
127
+
128
+ <details><summary>Click to expand</summary>
129
+
130
+ </details>
131
+ -->
132
+
133
+ <!--
134
+ ### Out-of-Scope Use
135
+
136
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
137
+ -->
138
+
139
+ <!--
140
+ ## Bias, Risks and Limitations
141
+
142
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
143
+ -->
144
+
145
+ <!--
146
+ ### Recommendations
147
+
148
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
149
+ -->
150
+
151
+ ## Training Details
152
+
153
+ ### Training Dataset
154
+
155
+ #### Unnamed Dataset
156
+
157
+
158
+ * Size: 10,962 training samples
159
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
160
+ * Approximate statistics based on the first 1000 samples:
161
+ | | sentence_0 | sentence_1 | label |
162
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------|
163
+ | type | string | string | int |
164
+ | details | <ul><li>min: 10 tokens</li><li>mean: 47.92 tokens</li><li>max: 393 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 49.62 tokens</li><li>max: 426 tokens</li></ul> | <ul><li>0: ~49.20%</li><li>1: ~50.80%</li></ul> |
165
+ * Samples:
166
+ | sentence_0 | sentence_1 | label |
167
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
168
+ | <code>Inscrição, nome, político, Império (1822-1889), Livro dos Heróis da Pátria. </code> | <code>Inscrição, nome, condessa, Livro dos Heróis da Pátria. </code> | <code>1</code> |
169
+ | <code>Alteração, Lei do Projovem, inclusão, modalidade, artista, atleta.</code> | <code>Concessão, Auxílio Emergencial Financeiro, motorista, transporte escolar, suspensão, pagamento, financiamento, veículo, renegociação, dívida, Instituição Financeira, vigência, pandemia, Coronavírus.</code> | <code>0</code> |
170
+ | <code>Alteração, Código Penal, inclusão, efeito da condenação, proibição, nomeação, cargo de comissão, âmbito federal, crime, violência contra a mulher.</code> | <code>Alteração, Código Penal, Efeito da condenação, proibição, nomeação, Cargo em comissão, Administração Pública, Condenado, crime, violência contra a mulher, Lei Maria da Penha.</code> | <code>1</code> |
171
+ * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:
172
+ ```json
173
+ {
174
+ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
175
+ "margin": 0.5,
176
+ "size_average": true
177
+ }
178
+ ```
179
+
180
+ ### Training Hyperparameters
181
+ #### Non-Default Hyperparameters
182
+
183
+ - `per_device_train_batch_size`: 2
184
+ - `per_device_eval_batch_size`: 2
185
+ - `num_train_epochs`: 1
186
+ - `multi_dataset_batch_sampler`: round_robin
187
+
188
+ #### All Hyperparameters
189
+ <details><summary>Click to expand</summary>
190
+
191
+ - `overwrite_output_dir`: False
192
+ - `do_predict`: False
193
+ - `prediction_loss_only`: True
194
+ - `per_device_train_batch_size`: 2
195
+ - `per_device_eval_batch_size`: 2
196
+ - `per_gpu_train_batch_size`: None
197
+ - `per_gpu_eval_batch_size`: None
198
+ - `gradient_accumulation_steps`: 1
199
+ - `eval_accumulation_steps`: None
200
+ - `learning_rate`: 5e-05
201
+ - `weight_decay`: 0.0
202
+ - `adam_beta1`: 0.9
203
+ - `adam_beta2`: 0.999
204
+ - `adam_epsilon`: 1e-08
205
+ - `max_grad_norm`: 1
206
+ - `num_train_epochs`: 1
207
+ - `max_steps`: -1
208
+ - `lr_scheduler_type`: linear
209
+ - `lr_scheduler_kwargs`: {}
210
+ - `warmup_ratio`: 0.0
211
+ - `warmup_steps`: 0
212
+ - `log_level`: passive
213
+ - `log_level_replica`: warning
214
+ - `log_on_each_node`: True
215
+ - `logging_nan_inf_filter`: True
216
+ - `save_safetensors`: True
217
+ - `save_on_each_node`: False
218
+ - `save_only_model`: False
219
+ - `no_cuda`: False
220
+ - `use_cpu`: False
221
+ - `use_mps_device`: False
222
+ - `seed`: 42
223
+ - `data_seed`: None
224
+ - `jit_mode_eval`: False
225
+ - `use_ipex`: False
226
+ - `bf16`: False
227
+ - `fp16`: False
228
+ - `fp16_opt_level`: O1
229
+ - `half_precision_backend`: auto
230
+ - `bf16_full_eval`: False
231
+ - `fp16_full_eval`: False
232
+ - `tf32`: None
233
+ - `local_rank`: 0
234
+ - `ddp_backend`: None
235
+ - `tpu_num_cores`: None
236
+ - `tpu_metrics_debug`: False
237
+ - `debug`: []
238
+ - `dataloader_drop_last`: False
239
+ - `dataloader_num_workers`: 0
240
+ - `dataloader_prefetch_factor`: None
241
+ - `past_index`: -1
242
+ - `disable_tqdm`: False
243
+ - `remove_unused_columns`: True
244
+ - `label_names`: None
245
+ - `load_best_model_at_end`: False
246
+ - `ignore_data_skip`: False
247
+ - `fsdp`: []
248
+ - `fsdp_min_num_params`: 0
249
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
250
+ - `fsdp_transformer_layer_cls_to_wrap`: None
251
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
252
+ - `deepspeed`: None
253
+ - `label_smoothing_factor`: 0.0
254
+ - `optim`: adamw_torch
255
+ - `optim_args`: None
256
+ - `adafactor`: False
257
+ - `group_by_length`: False
258
+ - `length_column_name`: length
259
+ - `ddp_find_unused_parameters`: None
260
+ - `ddp_bucket_cap_mb`: None
261
+ - `ddp_broadcast_buffers`: False
262
+ - `dataloader_pin_memory`: True
263
+ - `dataloader_persistent_workers`: False
264
+ - `skip_memory_metrics`: True
265
+ - `use_legacy_prediction_loop`: False
266
+ - `push_to_hub`: False
267
+ - `resume_from_checkpoint`: None
268
+ - `hub_model_id`: None
269
+ - `hub_strategy`: every_save
270
+ - `hub_private_repo`: False
271
+ - `hub_always_push`: False
272
+ - `gradient_checkpointing`: False
273
+ - `gradient_checkpointing_kwargs`: None
274
+ - `include_inputs_for_metrics`: False
275
+ - `fp16_backend`: auto
276
+ - `push_to_hub_model_id`: None
277
+ - `push_to_hub_organization`: None
278
+ - `mp_parameters`:
279
+ - `auto_find_batch_size`: False
280
+ - `full_determinism`: False
281
+ - `torchdynamo`: None
282
+ - `ray_scope`: last
283
+ - `ddp_timeout`: 1800
284
+ - `torch_compile`: False
285
+ - `torch_compile_backend`: None
286
+ - `torch_compile_mode`: None
287
+ - `dispatch_batches`: None
288
+ - `split_batches`: None
289
+ - `include_tokens_per_second`: False
290
+ - `include_num_input_tokens_seen`: False
291
+ - `neftune_noise_alpha`: None
292
+ - `optim_target_modules`: None
293
+ - `batch_sampler`: batch_sampler
294
+ - `multi_dataset_batch_sampler`: round_robin
295
+
296
+ </details>
297
+
298
+ ### Training Logs
299
+ | Epoch | Step | Training Loss |
300
+ |:------:|:----:|:-------------:|
301
+ | 0.0912 | 500 | 0.0268 |
302
+ | 0.1824 | 1000 | 0.0247 |
303
+ | 0.2737 | 1500 | 0.0227 |
304
+ | 0.3649 | 2000 | 0.0215 |
305
+ | 0.4561 | 2500 | 0.0196 |
306
+ | 0.5473 | 3000 | 0.0182 |
307
+ | 0.6386 | 3500 | 0.0178 |
308
+ | 0.7298 | 4000 | 0.0152 |
309
+ | 0.8210 | 4500 | 0.0136 |
310
+ | 0.9122 | 5000 | 0.0132 |
311
+
312
+
313
+ ### Framework Versions
314
+ - Python: 3.10.14
315
+ - Sentence Transformers: 3.0.0
316
+ - Transformers: 4.39.3
317
+ - PyTorch: 2.2.0
318
+ - Accelerate: 0.30.1
319
+ - Datasets: 2.14.4
320
+ - Tokenizers: 0.15.1
321
+
322
+ ## Citation
323
+
324
+ ### BibTeX
325
+
326
+ #### Sentence Transformers
327
+ ```bibtex
328
+ @inproceedings{reimers-2019-sentence-bert,
329
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
330
+ author = "Reimers, Nils and Gurevych, Iryna",
331
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
332
+ month = "11",
333
+ year = "2019",
334
+ publisher = "Association for Computational Linguistics",
335
+ url = "https://arxiv.org/abs/1908.10084",
336
+ }
337
+ ```
338
+
339
+ #### ContrastiveLoss
340
+ ```bibtex
341
+ @inproceedings{hadsell2006dimensionality,
342
+ author={Hadsell, R. and Chopra, S. and LeCun, Y.},
343
+ booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
344
+ title={Dimensionality Reduction by Learning an Invariant Mapping},
345
+ year={2006},
346
+ volume={2},
347
+ number={},
348
+ pages={1735-1742},
349
+ doi={10.1109/CVPR.2006.100}
350
+ }
351
+ ```
352
+
353
+ <!--
354
+ ## Glossary
355
+
356
+ *Clearly define terms in order to be accessible across audiences.*
357
+ -->
358
+
359
+ <!--
360
+ ## Model Card Authors
361
+
362
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
363
+ -->
364
+
365
+ <!--
366
+ ## Model Card Contact
367
+
368
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
369
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/models/urf/txtIndexacao_labse/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "directionality": "bidi",
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-12,
16
+ "max_position_embeddings": 512,
17
+ "model_type": "bert",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 0,
21
+ "pooler_fc_size": 768,
22
+ "pooler_num_attention_heads": 12,
23
+ "pooler_num_fc_layers": 3,
24
+ "pooler_size_per_head": 128,
25
+ "pooler_type": "first_token_transform",
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.42.4",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 501153
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.3.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31fc0ac814e157ff353d0c88e73ec35b65b569a0a499d635305e1f8596c1f3b5
3
+ size 1883730160
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e160a07b3b76c68cd214747a559d36e04109c9fc522ccfce79548098ce85da2a
3
+ size 13632172
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff