from huggingface_sb3.push_to_hub import generate_metadata from huggingface_hub.repocard import metadata_save from hf_helpers.gym_video import generate_video, load_ppo_model_for_video from hf_helpers.hf_sb3 import generate_config_json, generate_results_json from hf_helpers.sb3_eval import eval_model_with_seed readme_path = "README.md" env_id = "LunarLander-v2" main_model_fp = "ppo-LunarLander-v2_010_000_000_hf_defaults.zip" other_models = [ "ppo-LunarLander-v2_001_000_000_hf_defaults.zip", "ppo-LunarLander-v2_010_000_000_sb3_defaults.zip", "ppo-LunarLander-v2_123_456_789_hf_defaults.zip", ] # 1. Evaluate model best_seed = 902 best_n_envs = 8 n_eval_episodes = 10 result, mean_reward, std_reward = eval_model_with_seed( main_model_fp, env_id, seed=best_seed, n_eval_episodes=n_eval_episodes, n_envs=best_n_envs, ) # 2. Create config.json generate_config_json(main_model_fp, "config.json") # Also create config files for the other models for model_fp in other_models: generate_config_json(model_fp, f"config-{model_fp.replace('.zip', '')}.json") # 3. Create results.json generate_results_json("results.json", mean_reward, std_reward, n_eval_episodes, True) # 4. Generate video model_for_video = load_ppo_model_for_video(main_model_fp, env_id) generate_video(model_for_video, "video.mp4", video_length_in_episodes=5) # 5. Generate model card metadata = generate_metadata( model_name=main_model_fp.replace(".zip", ""), env_id=env_id, mean_reward=mean_reward, std_reward=std_reward, ) metadata["license"] = "mit" metadata_save(readme_path, metadata)