File size: 8,855 Bytes
68f30f0 ee374ee c1f8458 ee374ee c1f8458 68f30f0 ee374ee 25d9e30 3acb317 92bbdc4 ee374ee 25d9e30 092c1b6 ee374ee d34bbd5 ee374ee d34bbd5 ee374ee d34bbd5 ee374ee d34bbd5 ee374ee c1f8458 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
---
language:
- fr
- en
license: mit
library_name: transformers
tags:
- french
- chocolatine
datasets:
- jpacifico/french-orca-dpo-pairs-revised
pipeline_tag: text-generation
model-index:
- name: Chocolatine-14B-Instruct-DPO-v1.2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 68.52
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-DPO-v1.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 49.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-DPO-v1.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 17.98
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-DPO-v1.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.07
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-DPO-v1.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.35
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-DPO-v1.2
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 41.07
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=jpacifico/Chocolatine-14B-Instruct-DPO-v1.2
name: Open LLM Leaderboard
---
### Chocolatine-14B-Instruct-DPO-v1.2
DPO fine-tuned of [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) (14B params)
using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset.
Training in French also improves the model in English, surpassing the performances of its base model.
Window context = 4k tokens
* **4-bit quantized version** available here : [jpacifico/Chocolatine-14B-Instruct-DPO-v1.2-Q4_K_M-GGUF](https://huggingface.co/jpacifico/Chocolatine-14B-Instruct-DPO-v1.2-Q4_K_M-GGUF)
### OpenLLM Leaderboard
Chocolatine is the best-performing model in size 13B on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (last update: 2024/10/18)
![image/png](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Assets/chocolatine_14B_leaderboard_20240901.png?raw=false)
| Metric |Value|
|-------------------|----:|
|**Avg.** |**33.3**|
|IFEval |68.52|
|BBH |49.85|
|MATH Lvl 5 |17.98|
|GPQA |10.07|
|MuSR |12.35|
|MMLU-PRO |41.07|
### MT-Bench-French
Chocolatine-14B-Instruct-DPO-v1.2 outperforms its previous versions and its base model Phi-3-medium-4k-instruct on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french), used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench) and GPT-4-Turbo as LLM-judge.
```
########## First turn ##########
score
model turn
gpt-4o-mini 1 9.2875
Chocolatine-14B-Instruct-4k-DPO 1 8.6375
Chocolatine-14B-Instruct-DPO-v1.2 1 8.6125
Phi-3.5-mini-instruct 1 8.5250
Chocolatine-3B-Instruct-DPO-v1.2 1 8.3750
Phi-3-medium-4k-instruct 1 8.2250
gpt-3.5-turbo 1 8.1375
Chocolatine-3B-Instruct-DPO-Revised 1 7.9875
Daredevil-8B 1 7.8875
Meta-Llama-3.1-8B-Instruct 1 7.0500
vigostral-7b-chat 1 6.7875
Mistral-7B-Instruct-v0.3 1 6.7500
gemma-2-2b-it 1 6.4500
French-Alpaca-7B-Instruct_beta 1 5.6875
vigogne-2-7b-chat 1 5.6625
########## Second turn ##########
score
model turn
gpt-4o-mini 2 8.912500
Chocolatine-14B-Instruct-DPO-v1.2 2 8.337500
Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
Chocolatine-3B-Instruct-DPO-v1.2 2 7.862500
Phi-3-medium-4k-instruct 2 7.750000
Chocolatine-14B-Instruct-4k-DPO 2 7.737500
gpt-3.5-turbo 2 7.679167
Phi-3.5-mini-instruct 2 7.575000
Daredevil-8B 2 7.087500
Meta-Llama-3.1-8B-Instruct 2 6.787500
Mistral-7B-Instruct-v0.3 2 6.500000
vigostral-7b-chat 2 6.162500
gemma-2-2b-it 2 6.100000
French-Alpaca-7B-Instruct_beta 2 5.487395
vigogne-2-7b-chat 2 2.775000
########## Average ##########
score
model
gpt-4o-mini 9.100000
Chocolatine-14B-Instruct-DPO-v1.2 8.475000
Chocolatine-14B-Instruct-4k-DPO 8.187500
Chocolatine-3B-Instruct-DPO-v1.2 8.118750
Phi-3.5-mini-instruct 8.050000
Phi-3-medium-4k-instruct 7.987500
Chocolatine-3B-Instruct-DPO-Revised 7.962500
gpt-3.5-turbo 7.908333
Daredevil-8B 7.487500
Meta-Llama-3.1-8B-Instruct 6.918750
Mistral-7B-Instruct-v0.3 6.625000
vigostral-7b-chat 6.475000
gemma-2-2b-it 6.275000
French-Alpaca-7B-Instruct_beta 5.587866
vigogne-2-7b-chat 4.218750
```
### Usage
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_14B_inference_test_colab.ipynb)
You can also run Chocolatine using the following code:
```python
import transformers
from transformers import AutoTokenizer
# Format prompt
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
# Create pipeline
pipeline = transformers.pipeline(
"text-generation",
model=new_model,
tokenizer=tokenizer
)
# Generate text
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
```
### Limitations
The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.
- **Developed by:** Jonathan Pacifico, 2024
- **Model type:** LLM
- **Language(s) (NLP):** French, English
- **License:** MIT
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jpacifico__Chocolatine-14B-Instruct-DPO-v1.2)
| Metric |Value|
|-------------------|----:|
|Avg. |33.30|
|IFEval (0-Shot) |68.52|
|BBH (3-Shot) |49.85|
|MATH Lvl 5 (4-Shot)|17.98|
|GPQA (0-shot) |10.07|
|MuSR (0-shot) |12.35|
|MMLU-PRO (5-shot) |41.07|
|