Update README.md
Browse files
README.md
CHANGED
@@ -39,63 +39,82 @@ Chocolatine is the best-performing 3B model on the [OpenLLM Leaderboard](https:/
|
|
39 |
|
40 |
### MT-Bench-French
|
41 |
|
42 |
-
Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french)
|
43 |
used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench)
|
|
|
44 |
|
45 |
```
|
46 |
########## First turn ##########
|
47 |
-
|
48 |
-
model
|
49 |
-
gpt-
|
50 |
-
Chocolatine-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
########## Second turn ##########
|
65 |
-
|
66 |
-
model
|
67 |
-
|
68 |
-
|
69 |
-
Chocolatine-3B-Instruct-DPO-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
########## Average ##########
|
83 |
-
|
84 |
-
model
|
85 |
-
|
86 |
-
|
87 |
-
Chocolatine-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
```
|
100 |
|
101 |
### Usage
|
|
|
39 |
|
40 |
### MT-Bench-French
|
41 |
|
42 |
+
Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french),
|
43 |
used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench)
|
44 |
+
Notably, this latest version of the Chocolatine-3B model is approaching the performance of Phi-3-Medium (14B) in French, which is a remarkable achievement.
|
45 |
|
46 |
```
|
47 |
########## First turn ##########
|
48 |
+
score
|
49 |
+
model turn
|
50 |
+
gpt-4o-mini 1 9.28750
|
51 |
+
Chocolatine-14B-Instruct-4k-DPO 1 8.63750
|
52 |
+
Chocolatine-14B-Instruct-DPO-v1.2 1 8.61250
|
53 |
+
Phi-3-medium-4k-instruct 1 8.22500
|
54 |
+
gpt-3.5-turbo 1 8.13750
|
55 |
+
Chocolatine-3B-Instruct-DPO-Revised 1 7.98750
|
56 |
+
Daredevil-8B 1 7.88750
|
57 |
+
Daredevil-8B-abliterated 1 7.83750
|
58 |
+
Chocolatine-3B-Instruct-DPO-v1.0 1 7.68750
|
59 |
+
NeuralDaredevil-8B-abliterated 1 7.62500
|
60 |
+
Phi-3-mini-4k-instruct 1 7.21250
|
61 |
+
Meta-Llama-3-8B-Instruct 1 7.16250
|
62 |
+
Meta-Llama-3.1-8B-Instruct 1 7.05000
|
63 |
+
vigostral-7b-chat 1 6.78750
|
64 |
+
Mistral-7B-Instruct-v0.3 1 6.75000
|
65 |
+
gemma-2-2b-it 1 6.45000
|
66 |
+
Mistral-7B-Instruct-v0.2 1 6.28750
|
67 |
+
French-Alpaca-7B-Instruct_beta 1 5.68750
|
68 |
+
vigogne-2-7b-chat 1 5.66250
|
69 |
+
vigogne-2-7b-instruct 1 5.13750
|
70 |
|
71 |
########## Second turn ##########
|
72 |
+
score
|
73 |
+
model turn
|
74 |
+
gpt-4o-mini 2 8.912500
|
75 |
+
Chocolatine-14B-Instruct-DPO-v1.2 2 8.337500
|
76 |
+
Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
|
77 |
+
Phi-3-medium-4k-instruct 2 7.750000
|
78 |
+
Chocolatine-14B-Instruct-4k-DPO 2 7.737500
|
79 |
+
gpt-3.5-turbo 2 7.679167
|
80 |
+
Chocolatine-3B-Instruct-DPO-v1.0 2 7.612500
|
81 |
+
NeuralDaredevil-8B-abliterated 2 7.125000
|
82 |
+
Daredevil-8B 2 7.087500
|
83 |
+
Daredevil-8B-abliterated 2 6.873418
|
84 |
+
Meta-Llama-3-8B-Instruct 2 6.800000
|
85 |
+
Meta-Llama-3.1-8B-Instruct 2 6.787500
|
86 |
+
Mistral-7B-Instruct-v0.2 2 6.512500
|
87 |
+
Mistral-7B-Instruct-v0.3 2 6.500000
|
88 |
+
Phi-3-mini-4k-instruct 2 6.487500
|
89 |
+
vigostral-7b-chat 2 6.162500
|
90 |
+
gemma-2-2b-it 2 6.100000
|
91 |
+
French-Alpaca-7B-Instruct_beta 2 5.487395
|
92 |
+
vigogne-2-7b-chat 2 2.775000
|
93 |
+
vigogne-2-7b-instruct 2 2.240506
|
94 |
|
95 |
########## Average ##########
|
96 |
+
score
|
97 |
+
model
|
98 |
+
gpt-4o-mini 9.100000
|
99 |
+
Chocolatine-14B-Instruct-DPO-v1.2 8.475000
|
100 |
+
Chocolatine-14B-Instruct-4k-DPO 8.187500
|
101 |
+
Phi-3-medium-4k-instruct 7.987500
|
102 |
+
Chocolatine-3B-Instruct-DPO-Revised 7.962500
|
103 |
+
gpt-3.5-turbo 7.908333
|
104 |
+
Chocolatine-3B-Instruct-DPO-v1.0 7.650000
|
105 |
+
Daredevil-8B 7.487500
|
106 |
+
NeuralDaredevil-8B-abliterated 7.375000
|
107 |
+
Daredevil-8B-abliterated 7.358491
|
108 |
+
Meta-Llama-3-8B-Instruct 6.981250
|
109 |
+
Meta-Llama-3.1-8B-Instruct 6.918750
|
110 |
+
Phi-3-mini-4k-instruct 6.850000
|
111 |
+
Mistral-7B-Instruct-v0.3 6.625000
|
112 |
+
vigostral-7b-chat 6.475000
|
113 |
+
Mistral-7B-Instruct-v0.2 6.400000
|
114 |
+
gemma-2-2b-it 6.275000
|
115 |
+
French-Alpaca-7B-Instruct_beta 5.587866
|
116 |
+
vigogne-2-7b-chat 4.218750
|
117 |
+
vigogne-2-7b-instruct 3.698113
|
118 |
```
|
119 |
|
120 |
### Usage
|