Update README.md
Browse files
README.md
CHANGED
@@ -19,24 +19,77 @@ using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datas
|
|
19 |
Chocolatine is a general model and can itself be finetuned to be specialized for specific use cases.
|
20 |
Window context = 4k tokens
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
### Evaluation
|
25 |
|
26 |
Submitted on [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard), results in few days !
|
|
|
27 |
|
28 |
-
###
|
29 |
|
30 |
Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french) by Bofeng Huang,
|
31 |
-
used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench)
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
### Usage
|
36 |
|
37 |
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_3B_inference_test_colab.ipynb)
|
38 |
|
39 |
-
You can also run
|
40 |
|
41 |
```python
|
42 |
import transformers
|
@@ -71,8 +124,8 @@ print(sequences[0]['generated_text'])
|
|
71 |
|
72 |
### Limitations
|
73 |
|
74 |
-
Chocolatine is a quick demonstration that a base
|
75 |
-
It does not have any moderation
|
76 |
|
77 |
- **Developed by:** Jonathan Pacifico, 2024
|
78 |
- **Model type:** LLM
|
|
|
19 |
Chocolatine is a general model and can itself be finetuned to be specialized for specific use cases.
|
20 |
Window context = 4k tokens
|
21 |
|
22 |
+
### Benchmarks
|
|
|
|
|
23 |
|
24 |
Submitted on [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard), results in few days !
|
25 |
+
First version Chocolatine-3B-Instruct-DPO-v1.0 is already one of the best-performing 3B models on the Open LLM Leaderboard
|
26 |
|
27 |
+
### MT-Bench-French
|
28 |
|
29 |
Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french) by Bofeng Huang,
|
30 |
+
used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench)
|
31 |
|
32 |
+
```
|
33 |
+
########## First turn ##########
|
34 |
+
score
|
35 |
+
model turn
|
36 |
+
gpt-3.5-turbo 1 8.1375
|
37 |
+
Chocolatine-3B-Instruct-DPO-Revised 1 7.9875
|
38 |
+
Daredevil-8B 1 7.8875
|
39 |
+
Daredevil-8B-abliterated 1 7.8375
|
40 |
+
Chocolatine-3B-Instruct-DPO-v1.0 1 7.6875
|
41 |
+
NeuralDaredevil-8B-abliterated 1 7.6250
|
42 |
+
Phi-3-mini-4k-instruct 1 7.2125
|
43 |
+
Meta-Llama-3-8B-Instruct 1 7.1625
|
44 |
+
vigostral-7b-chat 1 6.7875
|
45 |
+
Mistral-7B-Instruct-v0.3 1 6.7500
|
46 |
+
Mistral-7B-Instruct-v0.2 1 6.2875
|
47 |
+
French-Alpaca-7B-Instruct_beta 1 5.6875
|
48 |
+
vigogne-2-7b-chat 1 5.6625
|
49 |
+
vigogne-2-7b-instruct 1 5.1375
|
50 |
+
|
51 |
+
########## Second turn ##########
|
52 |
+
score
|
53 |
+
model turn
|
54 |
+
Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
|
55 |
+
gpt-3.5-turbo 2 7.679167
|
56 |
+
Chocolatine-3B-Instruct-DPO-v1.0 2 7.612500
|
57 |
+
NeuralDaredevil-8B-abliterated 2 7.125000
|
58 |
+
Daredevil-8B 2 7.087500
|
59 |
+
Daredevil-8B-abliterated 2 6.873418
|
60 |
+
Meta-Llama-3-8B-Instruct 2 6.800000
|
61 |
+
Mistral-7B-Instruct-v0.2 2 6.512500
|
62 |
+
Mistral-7B-Instruct-v0.3 2 6.500000
|
63 |
+
Phi-3-mini-4k-instruct 2 6.487500
|
64 |
+
vigostral-7b-chat 2 6.162500
|
65 |
+
French-Alpaca-7B-Instruct_beta 2 5.487395
|
66 |
+
vigogne-2-7b-chat 2 2.775000
|
67 |
+
vigogne-2-7b-instruct 2 2.240506
|
68 |
+
|
69 |
+
########## Average ##########
|
70 |
+
score
|
71 |
+
model
|
72 |
+
Chocolatine-3B-Instruct-DPO-Revised 7.962500
|
73 |
+
gpt-3.5-turbo 7.908333
|
74 |
+
Chocolatine-3B-Instruct-DPO-v1.0 7.650000
|
75 |
+
Daredevil-8B 7.487500
|
76 |
+
NeuralDaredevil-8B-abliterated 7.375000
|
77 |
+
Daredevil-8B-abliterated 7.358491
|
78 |
+
Meta-Llama-3-8B-Instruct 6.981250
|
79 |
+
Phi-3-mini-4k-instruct 6.850000
|
80 |
+
Mistral-7B-Instruct-v0.3 6.625000
|
81 |
+
vigostral-7b-chat 6.475000
|
82 |
+
Mistral-7B-Instruct-v0.2 6.400000
|
83 |
+
French-Alpaca-7B-Instruct_beta 5.587866
|
84 |
+
vigogne-2-7b-chat 4.218750
|
85 |
+
vigogne-2-7b-instruct 3.698113
|
86 |
+
```
|
87 |
|
88 |
### Usage
|
89 |
|
90 |
You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_3B_inference_test_colab.ipynb)
|
91 |
|
92 |
+
You can also run Chocolatine using the following code:
|
93 |
|
94 |
```python
|
95 |
import transformers
|
|
|
124 |
|
125 |
### Limitations
|
126 |
|
127 |
+
The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
|
128 |
+
It does not have any moderation mechanism.
|
129 |
|
130 |
- **Developed by:** Jonathan Pacifico, 2024
|
131 |
- **Model type:** LLM
|