--- library_name: transformers license: mit language: - fr - en tags: - french - chocolatine datasets: - jpacifico/french-orca-dpo-pairs-revised pipeline_tag: text-generation --- ### Chocolatine-3B-Instruct-DPO-Revised DPO fine-tuned of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) (3.82B params) using the [jpacifico/french-orca-dpo-pairs-revised](https://huggingface.co/datasets/jpacifico/french-orca-dpo-pairs-revised) rlhf dataset. Training in French also improves the model in English, surpassing the performances of its base model. Window context = 4k tokens ### Benchmarks Chocolatine is the best-performing 3B model on the [OpenLLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) (august 2024) ![image/png](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Assets/openllm_choco3b_revised.png?raw=false) | Metric |Value| |-------------------|----:| |**Avg.** |**27.63**| |IFEval (0-Shot) |56.23| |BBH (3-Shot) |37.16| |MATH Lvl 5 (4-Shot)|14.5| |GPQA (0-shot) |9.62| |MuSR (0-shot) |15.1| |MMLU-PRO (5-shot) |33.21| ### MT-Bench-French Chocolatine-3B-Instruct-DPO-Revised is outperforming GPT-3.5-Turbo on [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french), used with [multilingual-mt-bench](https://github.com/Peter-Devine/multilingual_mt_bench) and GPT-4-Turbo as LLM-judge. Notably, this latest version of the Chocolatine-3B model is approaching the performance of Phi-3-Medium (14B) in French, which is a remarkable achievement. ``` ########## First turn ########## score model turn gpt-4o-mini 1 9.28750 Chocolatine-14B-Instruct-DPO-v1.2 1 8.61250 Phi-3-medium-4k-instruct 1 8.22500 gpt-3.5-turbo 1 8.13750 Chocolatine-3B-Instruct-DPO-Revised 1 7.98750 Daredevil-8B 1 7.88750 NeuralDaredevil-8B-abliterated 1 7.62500 Phi-3-mini-4k-instruct 1 7.21250 Meta-Llama-3.1-8B-Instruct 1 7.05000 vigostral-7b-chat 1 6.78750 Mistral-7B-Instruct-v0.3 1 6.75000 gemma-2-2b-it 1 6.45000 French-Alpaca-7B-Instruct_beta 1 5.68750 vigogne-2-7b-chat 1 5.66250 ########## Second turn ########## score model turn gpt-4o-mini 2 8.912500 Chocolatine-14B-Instruct-DPO-v1.2 2 8.337500 Chocolatine-3B-Instruct-DPO-Revised 2 7.937500 Phi-3-medium-4k-instruct 2 7.750000 gpt-3.5-turbo 2 7.679167 NeuralDaredevil-8B-abliterated 2 7.125000 Daredevil-8B 2 7.087500 Meta-Llama-3.1-8B-Instruct 2 6.787500 Mistral-7B-Instruct-v0.3 2 6.500000 Phi-3-mini-4k-instruct 2 6.487500 vigostral-7b-chat 2 6.162500 gemma-2-2b-it 2 6.100000 French-Alpaca-7B-Instruct_beta 2 5.487395 vigogne-2-7b-chat 2 2.775000 ########## Average ########## score model gpt-4o-mini 9.100000 Chocolatine-14B-Instruct-DPO-v1.2 8.475000 Phi-3-medium-4k-instruct 7.987500 Chocolatine-3B-Instruct-DPO-Revised 7.962500 gpt-3.5-turbo 7.908333 Daredevil-8B 7.487500 NeuralDaredevil-8B-abliterated 7.375000 Meta-Llama-3.1-8B-Instruct 6.918750 Phi-3-mini-4k-instruct 6.850000 Mistral-7B-Instruct-v0.3 6.625000 vigostral-7b-chat 6.475000 gemma-2-2b-it 6.275000 French-Alpaca-7B-Instruct_beta 5.587866 vigogne-2-7b-chat 4.218750 ``` ### Usage You can run this model using my [Colab notebook](https://github.com/jpacifico/Chocolatine-LLM/blob/main/Chocolatine_3B_inference_test_colab.ipynb) You can also run Chocolatine using the following code: ```python import transformers from transformers import AutoTokenizer # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=new_model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` * **4-bit quantized version** is available here : [jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q4_K_M-GGUF](https://huggingface.co/jpacifico/Chocolatine-3B-Instruct-DPO-Revised-Q4_K_M-GGUF) * **Ollama**: [jpacifico/chocolatine-3b](https://ollama.com/jpacifico/chocolatine-3b) ```bash ollama run jpacifico/chocolatine-3b ``` Ollama *Modelfile* example : ```bash FROM ./chocolatine-3b-instruct-dpo-revised-q4_k_m.gguf TEMPLATE """{{ if .System }}<|system|> {{ .System }}<|end|> {{ end }}{{ if .Prompt }}<|user|> {{ .Prompt }}<|end|> {{ end }}<|assistant|> {{ .Response }}<|end|> """ PARAMETER stop """{"stop": ["<|end|>","<|user|>","<|assistant|>"]}""" SYSTEM """You are a friendly assistant called Chocolatine.""" ``` ### Limitations The Chocolatine model is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanism. - **Developed by:** Jonathan Pacifico, 2024 - **Model type:** LLM - **Language(s) (NLP):** French, English - **License:** MIT