Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,282 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
This model was trained using the 8888 images of the [Anky Genesis NFT Collection](https://drive.google.com/drive/folders/1OBDQ08r8pLN4nfNf-48j87wzUEmF-ox4?usp=sharing), and its mission is to transform an image into pixel art, like so:
|
6 |
+
|
7 |
+
![Anky Degen Pixel Example](https://github.com/jpfraneto/images/blob/main/ankydegenpixel.png?raw=true)
|
8 |
+
|
9 |
+
The code used for training it is the following:
|
10 |
+
|
11 |
+
```
|
12 |
+
import os
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.optim as optim
|
16 |
+
from torch.utils.data import DataLoader, Dataset
|
17 |
+
from torchvision import transforms
|
18 |
+
from PIL import Image
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
# Custom dataset for loading the images
|
22 |
+
class PixelArtDataset(Dataset):
|
23 |
+
def __init__(self, image_folder, transform=None):
|
24 |
+
self.image_folder = image_folder
|
25 |
+
self.transform = transform
|
26 |
+
self.image_files = [f"{i}.png" for i in range(1, 8889)]
|
27 |
+
|
28 |
+
# Debug: Check if images are correctly listed
|
29 |
+
print(f"Total images found: {len(self.image_files)}")
|
30 |
+
|
31 |
+
def __len__(self):
|
32 |
+
return len(self.image_files)
|
33 |
+
|
34 |
+
def __getitem__(self, idx):
|
35 |
+
img_path = os.path.join(self.image_folder, self.image_files[idx])
|
36 |
+
image = Image.open(img_path).convert("RGB")
|
37 |
+
if self.transform:
|
38 |
+
image = self.transform(image)
|
39 |
+
return image, image
|
40 |
+
|
41 |
+
# Define the neural network
|
42 |
+
class PixelArtGenerator(nn.Module):
|
43 |
+
def __init__(self):
|
44 |
+
super(PixelArtGenerator, self).__init__()
|
45 |
+
print("Initializing PixelArtGenerator Model...")
|
46 |
+
self.encoder = nn.Sequential(
|
47 |
+
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
|
48 |
+
nn.ReLU(),
|
49 |
+
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
|
50 |
+
nn.BatchNorm2d(128),
|
51 |
+
nn.ReLU(),
|
52 |
+
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
|
53 |
+
nn.BatchNorm2d(256),
|
54 |
+
nn.ReLU()
|
55 |
+
)
|
56 |
+
self.decoder = nn.Sequential(
|
57 |
+
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
|
58 |
+
nn.BatchNorm2d(128),
|
59 |
+
nn.ReLU(),
|
60 |
+
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
|
61 |
+
nn.BatchNorm2d(64),
|
62 |
+
nn.ReLU(),
|
63 |
+
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
|
64 |
+
nn.Tanh()
|
65 |
+
)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
x = self.encoder(x)
|
69 |
+
x = self.decoder(x)
|
70 |
+
return x
|
71 |
+
|
72 |
+
def train(model, dataloader, criterion, optimizer, device, epochs=50):
|
73 |
+
print("Starting training...")
|
74 |
+
model.train()
|
75 |
+
for epoch in range(epochs):
|
76 |
+
running_loss = 0.0
|
77 |
+
print(f"Epoch [{epoch+1}/{epochs}] starting...")
|
78 |
+
for batch_idx, (input_images, target_images) in enumerate(dataloader):
|
79 |
+
input_images, target_images = input_images.to(device), target_images.to(device)
|
80 |
+
optimizer.zero_grad()
|
81 |
+
outputs = model(input_images)
|
82 |
+
loss = criterion(outputs, target_images)
|
83 |
+
loss.backward()
|
84 |
+
optimizer.step()
|
85 |
+
running_loss += loss.item()
|
86 |
+
|
87 |
+
# Debug: Print progress for every batch
|
88 |
+
if batch_idx % 10 == 0:
|
89 |
+
print(f"Epoch [{epoch+1}/{epochs}], Batch [{batch_idx+1}/{len(dataloader)}], Loss: {loss.item():.4f}")
|
90 |
+
|
91 |
+
print(f"Epoch [{epoch+1}/{epochs}] completed with Loss: {running_loss/len(dataloader):.4f}")
|
92 |
+
|
93 |
+
def create_pixel_art(model, input_image_path, output_image_path, device):
|
94 |
+
print("Creating pixel art...")
|
95 |
+
model.eval()
|
96 |
+
transform = transforms.Compose([
|
97 |
+
transforms.Resize((64, 64)),
|
98 |
+
transforms.ToTensor(),
|
99 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
100 |
+
])
|
101 |
+
image = Image.open(input_image_path).convert("RGB")
|
102 |
+
input_image = transform(image).unsqueeze(0).to(device)
|
103 |
+
with torch.no_grad():
|
104 |
+
output_image = model(input_image).squeeze(0).cpu().numpy()
|
105 |
+
output_image = np.transpose(output_image, (1, 2, 0))
|
106 |
+
output_image = (output_image * 0.5 + 0.5) * 255.0
|
107 |
+
output_image = np.clip(output_image, 0, 255).astype(np.uint8)
|
108 |
+
output_image = Image.fromarray(output_image)
|
109 |
+
output_image.save(output_image_path)
|
110 |
+
print(f"Pixel art saved to {output_image_path}")
|
111 |
+
|
112 |
+
if __name__ == "__main__":
|
113 |
+
# Transform for input images
|
114 |
+
print("Setting up image transformations...")
|
115 |
+
transform = transforms.Compose([
|
116 |
+
transforms.Resize((64, 64)), # Resize to 64x64 for input
|
117 |
+
transforms.ToTensor(),
|
118 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
119 |
+
])
|
120 |
+
|
121 |
+
# Load dataset
|
122 |
+
print("Loading dataset...")
|
123 |
+
image_folder = "./" # Change this to your images folder path
|
124 |
+
dataset = PixelArtDataset(image_folder, transform)
|
125 |
+
dataloader = DataLoader(dataset, batch_size=8, shuffle=True) # Reduce batch size for debugging
|
126 |
+
|
127 |
+
# Check for GPU availability
|
128 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
129 |
+
print(f"Using device: {device}")
|
130 |
+
|
131 |
+
# Initialize the model, criterion, and optimizer
|
132 |
+
model = PixelArtGenerator().to(device)
|
133 |
+
criterion = nn.MSELoss()
|
134 |
+
optimizer = optim.Adam(model.parameters(), lr=0.0002)
|
135 |
+
|
136 |
+
# Enable data parallelism if multiple GPUs are available
|
137 |
+
if torch.cuda.device_count() > 1:
|
138 |
+
print(f"Using {torch.cuda.device_count()} GPUs")
|
139 |
+
model = nn.DataParallel(model)
|
140 |
+
|
141 |
+
# Train the model
|
142 |
+
train(model, dataloader, criterion, optimizer, device, epochs=50)
|
143 |
+
|
144 |
+
# Save the model
|
145 |
+
torch.save(model.state_dict(), "pixel_art_generator.pth")
|
146 |
+
print("Model saved as 'pixel_art_generator.pth'")
|
147 |
+
|
148 |
+
# Create pixel art from a new input image
|
149 |
+
input_image_path = "input_image.png" # Path to the high-resolution input image
|
150 |
+
output_image_path = "pixel_art.png" # Path to save the generated pixel art
|
151 |
+
create_pixel_art(model, input_image_path, output_image_path, device)
|
152 |
+
print("Pixel art creation completed.")
|
153 |
+
```
|
154 |
+
|
155 |
+
The training happened on a Cognition PRO called poiesis. It consisted of 50 epochs, and it lasted for about 4 hours running on 2x NVIDIA RTX 4090.
|
156 |
+
|
157 |
+
Its intended usage is for it to transform any image into its corresponding in pixels, as you can see on this one.
|
158 |
+
|
159 |
+
For running it like such, you can run the following python code on the containing folder of the model (for transforming an image called pfp.png):
|
160 |
+
|
161 |
+
```
|
162 |
+
import torch
|
163 |
+
import torch.nn as nn
|
164 |
+
from PIL import Image
|
165 |
+
import numpy as np
|
166 |
+
from torchvision import transforms
|
167 |
+
import os
|
168 |
+
|
169 |
+
# Define the neural network (same as the one used during training)
|
170 |
+
class PixelArtGenerator(nn.Module):
|
171 |
+
def __init__(self):
|
172 |
+
super(PixelArtGenerator, self).__init__()
|
173 |
+
print("Initializing PixelArtGenerator Model...")
|
174 |
+
self.encoder = nn.Sequential(
|
175 |
+
nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1),
|
176 |
+
nn.ReLU(),
|
177 |
+
nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1),
|
178 |
+
nn.BatchNorm2d(128),
|
179 |
+
nn.ReLU(),
|
180 |
+
nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1),
|
181 |
+
nn.BatchNorm2d(256),
|
182 |
+
nn.ReLU()
|
183 |
+
)
|
184 |
+
self.decoder = nn.Sequential(
|
185 |
+
nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1),
|
186 |
+
nn.BatchNorm2d(128),
|
187 |
+
nn.ReLU(),
|
188 |
+
nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1),
|
189 |
+
nn.BatchNorm2d(64),
|
190 |
+
nn.ReLU(),
|
191 |
+
nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1),
|
192 |
+
nn.Tanh()
|
193 |
+
)
|
194 |
+
|
195 |
+
def forward(self, x):
|
196 |
+
x = self.encoder(x)
|
197 |
+
x = self.decoder(x)
|
198 |
+
return x
|
199 |
+
|
200 |
+
def create_pixel_art(model, input_image_path, output_image_path, device):
|
201 |
+
print(f"Creating pixel art for {input_image_path}...")
|
202 |
+
|
203 |
+
# Check if the input image file exists
|
204 |
+
if not os.path.isfile(input_image_path):
|
205 |
+
print(f"Error: Input image file '{input_image_path}' not found.")
|
206 |
+
return
|
207 |
+
|
208 |
+
model.eval()
|
209 |
+
print("Model set to evaluation mode.")
|
210 |
+
|
211 |
+
# Define the transformation for the input image
|
212 |
+
transform = transforms.Compose([
|
213 |
+
transforms.Resize((64, 64)),
|
214 |
+
transforms.ToTensor(),
|
215 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
216 |
+
])
|
217 |
+
print("Image transformation defined.")
|
218 |
+
|
219 |
+
# Load and preprocess the input image
|
220 |
+
image = Image.open(input_image_path).convert("RGB")
|
221 |
+
input_image = transform(image).unsqueeze(0).to(device)
|
222 |
+
print(f"Input image '{input_image_path}' loaded and preprocessed.")
|
223 |
+
|
224 |
+
# Generate pixel art using the model
|
225 |
+
with torch.no_grad():
|
226 |
+
output_image = model(input_image).squeeze(0).cpu().numpy()
|
227 |
+
print("Pixel art generated by the model.")
|
228 |
+
|
229 |
+
# Post-process and save the output image
|
230 |
+
output_image = np.transpose(output_image, (1, 2, 0))
|
231 |
+
output_image = (output_image * 0.5 + 0.5) * 255.0
|
232 |
+
output_image = np.clip(output_image, 0, 255).astype(np.uint8)
|
233 |
+
output_image = Image.fromarray(output_image)
|
234 |
+
|
235 |
+
# Scale up the image to iPhone 11 width (828 pixels)
|
236 |
+
scaled_output_image = output_image.resize((828, int(828 * output_image.size[1] / output_image.size[0])), Image.NEAREST)
|
237 |
+
scaled_output_image.save(output_image_path)
|
238 |
+
print(f"Pixel art saved to '{output_image_path}'.")
|
239 |
+
|
240 |
+
if __name__ == "__main__":
|
241 |
+
print("Starting pixel art generation script...")
|
242 |
+
|
243 |
+
# Load the trained model
|
244 |
+
model = PixelArtGenerator()
|
245 |
+
model_path = "pixel_art_generator.pth" # Path to the saved model
|
246 |
+
print(f"Loading model from '{model_path}'...")
|
247 |
+
|
248 |
+
# Load model with handling for DataParallel
|
249 |
+
state_dict = torch.load(model_path)
|
250 |
+
if 'module.' in list(state_dict.keys())[0]:
|
251 |
+
# Remove 'module.' prefix if model was saved with DataParallel
|
252 |
+
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
|
253 |
+
model.load_state_dict(state_dict)
|
254 |
+
print("Model loaded successfully.")
|
255 |
+
|
256 |
+
# Check for GPU availability
|
257 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
258 |
+
model.to(device)
|
259 |
+
print(f"Using device: {device}")
|
260 |
+
|
261 |
+
# Define the input and output paths for the single image
|
262 |
+
input_image_path = "pfp.jpeg" # Path to the input image
|
263 |
+
output_image_path = "pfp_pixelated.png" # Path to save the generated pixel art
|
264 |
+
|
265 |
+
# Create pixel art for the single image
|
266 |
+
create_pixel_art(model, input_image_path, output_image_path, device)
|
267 |
+
|
268 |
+
print("Pixel art creation completed for the single image.")
|
269 |
+
|
270 |
+
```
|
271 |
+
|
272 |
+
Hope you enjoy, and any questions that you may have, feel free to reach out to @jpfraneto on telegram.
|
273 |
+
|
274 |
+
If you want to contribute to Anky, we have plenty of compute available, and a powerful story (and intention) that puts the unfolding of AI at the core of our experience as humans.
|
275 |
+
|
276 |
+
Think of it as a playground for your inner child, with boundless potential.
|
277 |
+
|
278 |
+
Our farcaster channel is here: https://warpcast.com/~/channel/anky
|
279 |
+
|
280 |
+
Your uniqueness is a gift.
|
281 |
+
|
282 |
+
🎩
|