File size: 4,546 Bytes
4ec7b4c
 
6686824
4ec7b4c
 
1bfe34d
 
4ec7b4c
 
81d4d88
4ec7b4c
 
 
 
 
 
 
81d4d88
1bfe34d
81d4d88
 
 
 
 
 
4ec7b4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d4d88
4ec7b4c
 
 
81d4d88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ec7b4c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
base_model: google-t5/t5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: pep_summarization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pep_summarization

This model is a fine-tuned version of [google-t5/t5-base](https://huggingface.co/google-t5/t5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0564
- Rouge1: 89.1468
- Rouge2: 88.6354
- Rougel: 89.0016
- Rougelsum: 89.0138
- Gen Len: 63.7246

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| No log        | 1.0   | 69   | 0.0463          | 84.7175 | 84.1187 | 84.7778 | 84.4607   | 74.1884 |
| No log        | 2.0   | 138  | 0.0312          | 87.2197 | 86.9176 | 87.1927 | 87.1243   | 70.0    |
| No log        | 3.0   | 207  | 0.0357          | 87.3839 | 87.2143 | 87.4316 | 87.3834   | 68.0580 |
| No log        | 4.0   | 276  | 0.0334          | 87.8426 | 87.5124 | 87.8504 | 87.7767   | 68.0580 |
| No log        | 5.0   | 345  | 0.0330          | 89.2541 | 88.8329 | 89.2476 | 89.1951   | 65.8551 |
| No log        | 6.0   | 414  | 0.0352          | 89.8437 | 89.6094 | 90.0088 | 89.8354   | 67.9565 |
| No log        | 7.0   | 483  | 0.0351          | 87.6113 | 87.1275 | 87.5987 | 87.4656   | 68.8841 |
| 0.0508        | 8.0   | 552  | 0.0346          | 90.0332 | 89.523  | 89.93   | 89.9648   | 64.9275 |
| 0.0508        | 9.0   | 621  | 0.0341          | 90.2056 | 89.7318 | 90.0764 | 90.1856   | 60.2174 |
| 0.0508        | 10.0  | 690  | 0.0405          | 90.2441 | 89.7403 | 90.1241 | 90.1975   | 62.4928 |
| 0.0508        | 11.0  | 759  | 0.0422          | 89.9563 | 89.3932 | 89.8517 | 89.919    | 62.6232 |
| 0.0508        | 12.0  | 828  | 0.0462          | 88.9553 | 88.5149 | 88.8596 | 88.8863   | 64.5507 |
| 0.0508        | 13.0  | 897  | 0.0462          | 88.3505 | 87.8014 | 88.2999 | 88.1348   | 68.6087 |
| 0.0508        | 14.0  | 966  | 0.0453          | 89.2841 | 88.7915 | 89.0835 | 89.1838   | 63.7971 |
| 0.0047        | 15.0  | 1035 | 0.0475          | 89.207  | 88.8346 | 89.1459 | 89.1182   | 65.4348 |
| 0.0047        | 16.0  | 1104 | 0.0526          | 89.7978 | 89.3703 | 89.7601 | 89.7866   | 65.9275 |
| 0.0047        | 17.0  | 1173 | 0.0517          | 88.0891 | 87.7321 | 88.1064 | 88.0137   | 66.4058 |
| 0.0047        | 18.0  | 1242 | 0.0503          | 90.3002 | 89.7609 | 90.1585 | 90.218    | 62.1014 |
| 0.0047        | 19.0  | 1311 | 0.0545          | 88.9807 | 88.5391 | 88.8142 | 88.8417   | 65.6957 |
| 0.0047        | 20.0  | 1380 | 0.0547          | 89.2547 | 88.8381 | 89.1517 | 89.158    | 65.1739 |
| 0.0047        | 21.0  | 1449 | 0.0560          | 88.2792 | 87.9155 | 88.2849 | 88.1559   | 66.0870 |
| 0.0019        | 22.0  | 1518 | 0.0575          | 88.0891 | 87.7321 | 88.1064 | 88.0137   | 66.4058 |
| 0.0019        | 23.0  | 1587 | 0.0576          | 87.7192 | 87.309  | 87.7299 | 87.5507   | 66.0435 |
| 0.0019        | 24.0  | 1656 | 0.0558          | 89.0175 | 88.5301 | 88.8811 | 88.906    | 64.1594 |
| 0.0019        | 25.0  | 1725 | 0.0561          | 89.0175 | 88.5301 | 88.8811 | 88.906    | 64.1594 |
| 0.0019        | 26.0  | 1794 | 0.0559          | 90.1169 | 89.6101 | 89.9618 | 90.0139   | 62.4203 |
| 0.0019        | 27.0  | 1863 | 0.0569          | 89.1468 | 88.6354 | 89.0016 | 89.0138   | 63.7246 |
| 0.0019        | 28.0  | 1932 | 0.0562          | 89.1468 | 88.6354 | 89.0016 | 89.0138   | 63.7246 |
| 0.0013        | 29.0  | 2001 | 0.0563          | 89.1468 | 88.6354 | 89.0016 | 89.0138   | 63.7246 |
| 0.0013        | 30.0  | 2070 | 0.0564          | 89.1468 | 88.6354 | 89.0016 | 89.0138   | 63.7246 |


### Framework versions

- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0