--- license: mit base_model: openmmlab/upernet-convnext-small tags: - image-segmentation - vision - generated_from_trainer model-index: - name: upernet-convnext-small-finetuned results: [] --- # upernet-convnext-small-finetuned This model is a fine-tuned version of [openmmlab/upernet-convnext-small](https://huggingface.co/openmmlab/upernet-convnext-small) on the jpodivin/plantorgans dataset. It achieves the following results on the evaluation set: - Loss: 0.2874 - Mean Iou: 0.4231 - Mean Accuracy: 0.5343 - Overall Accuracy: 0.7437 - Accuracy Void: nan - Accuracy Fruit: 0.8642 - Accuracy Leaf: 0.7167 - Accuracy Flower: 0.0 - Accuracy Stem: 0.5563 - Iou Void: 0.0 - Iou Fruit: 0.8605 - Iou Leaf: 0.7108 - Iou Flower: 0.0 - Iou Stem: 0.5440 - Median Iou: 0.5440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0006 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Void | Accuracy Fruit | Accuracy Leaf | Accuracy Flower | Accuracy Stem | Iou Void | Iou Fruit | Iou Leaf | Iou Flower | Iou Stem | Median Iou | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------------:|:-------------:|:---------------:|:-------------:|:--------:|:---------:|:--------:|:----------:|:--------:|:----------:| | 0.8456 | 1.0 | 575 | 0.3074 | 0.3946 | 0.4987 | 0.7054 | nan | 0.8110 | 0.6951 | 0.0 | 0.4888 | 0.0 | 0.8088 | 0.6852 | 0.0 | 0.4791 | 0.4791 | | 0.3006 | 2.0 | 1150 | 0.2868 | 0.3945 | 0.4965 | 0.7227 | nan | 0.8533 | 0.7186 | 0.0 | 0.4139 | 0.0 | 0.8494 | 0.7139 | 0.0 | 0.4092 | 0.4092 | | 0.3315 | 3.0 | 1725 | 0.2874 | 0.4231 | 0.5343 | 0.7437 | nan | 0.8642 | 0.7167 | 0.0 | 0.5563 | 0.0 | 0.8605 | 0.7108 | 0.0 | 0.5440 | 0.5440 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0