Copy non-ONNX
Browse files- README.md +1 -1
- config.json +26 -0
- handler.py +36 -0
- pytorch_model.bin +3 -0
- requirements.txt +1 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
---
|
|
|
1 |
---
|
2 |
+
license: unlicense
|
3 |
---
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.23.1",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
handler.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import AutoTokenizer, AutoModel
|
3 |
+
import torch
|
4 |
+
|
5 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
6 |
+
def mean_pooling(model_output, attention_mask):
|
7 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
8 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
9 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
10 |
+
|
11 |
+
class EndpointHandler():
|
12 |
+
def __init__(self, path=""):
|
13 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
self.tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3')
|
15 |
+
self.model = AutoModel.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3')
|
16 |
+
self.model.to(self.device)
|
17 |
+
print("model will run on ", self.device)
|
18 |
+
|
19 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
20 |
+
"""
|
21 |
+
data args:
|
22 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
23 |
+
kwargs
|
24 |
+
Return:
|
25 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
26 |
+
"""
|
27 |
+
sentences = data.pop("inputs",data)
|
28 |
+
encoded_input = self.tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
29 |
+
encoded_input = {key: value.to(self.device) for key, value in encoded_input.items()}
|
30 |
+
# Compute token embeddings
|
31 |
+
with torch.no_grad():
|
32 |
+
model_output = self.model(**encoded_input)
|
33 |
+
|
34 |
+
# Perform pooling. In this case, max pooling.
|
35 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
36 |
+
return sentence_embeddings.tolist()
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4593facd634592b4a1ba74db6e75b0d3a6418343a0fec6e019a07d04785b08b5
|
3 |
+
size 128
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
torch
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"special_tokens_map_file": "C:\\Users\\alvin/.cache\\huggingface\\hub\\models--sentence-transformers--all-MiniLM-L6-v2\\snapshots\\7dbbc90392e2f80f3d3c277d6e90027e55de9125\\special_tokens_map.json",
|
12 |
+
"strip_accents": null,
|
13 |
+
"tokenize_chinese_chars": true,
|
14 |
+
"tokenizer_class": "BertTokenizer",
|
15 |
+
"unk_token": "[UNK]"
|
16 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f1477dbc12d625e3d64d8f2f9cb5bf693eb30bccabba930eb66d06d3a3bdd84
|
3 |
+
size 128
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|