File size: 4,198 Bytes
84f38ce
 
 
 
 
4c5361d
 
 
 
84f38ce
 
4c5361d
 
 
 
 
 
 
 
 
 
 
 
 
 
84f38ce
 
 
 
 
 
 
4c5361d
 
 
 
84f38ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c5361d
 
 
84f38ce
 
 
4c5361d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84f38ce
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
license: apache-2.0
base_model: google/t5-efficient-tiny
tags:
- generated_from_trainer
datasets:
- generator
metrics:
- accuracy
model-index:
- name: salt_language_ID
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: generator
      type: generator
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9734543010752689
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# salt_language_ID

This model is a fine-tuned version of [google/t5-efficient-tiny](https://huggingface.co/google/t5-efficient-tiny) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0158
- Accuracy: 0.9735

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 20000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5256        | 0.025 | 500   | 0.1505          | 0.7698   |
| 0.0708        | 0.05  | 1000  | 0.0447          | 0.9237   |
| 0.0547        | 0.075 | 1500  | 0.0540          | 0.9093   |
| 0.0476        | 0.1   | 2000  | 0.0428          | 0.9264   |
| 0.0413        | 0.125 | 2500  | 0.0334          | 0.9399   |
| 0.0404        | 0.15  | 3000  | 0.0293          | 0.9479   |
| 0.0374        | 0.175 | 3500  | 0.0324          | 0.9459   |
| 0.0359        | 0.2   | 4000  | 0.0257          | 0.9493   |
| 0.0353        | 0.225 | 4500  | 0.0267          | 0.9513   |
| 0.0336        | 0.25  | 5000  | 0.0234          | 0.9587   |
| 0.0337        | 0.275 | 5500  | 0.0253          | 0.9560   |
| 0.0324        | 0.3   | 6000  | 0.0186          | 0.9684   |
| 0.0307        | 0.325 | 6500  | 0.0208          | 0.9634   |
| 0.028         | 0.35  | 7000  | 0.0253          | 0.9573   |
| 0.0297        | 0.375 | 7500  | 0.0224          | 0.9617   |
| 0.0264        | 0.4   | 8000  | 0.0224          | 0.9607   |
| 0.027         | 0.425 | 8500  | 0.0185          | 0.9667   |
| 0.0266        | 0.45  | 9000  | 0.0222          | 0.9634   |
| 0.0259        | 0.475 | 9500  | 0.0221          | 0.9617   |
| 0.0244        | 0.5   | 10000 | 0.0187          | 0.9688   |
| 0.0243        | 0.525 | 10500 | 0.0164          | 0.9694   |
| 0.0248        | 0.55  | 11000 | 0.0184          | 0.9674   |
| 0.024         | 0.575 | 11500 | 0.0155          | 0.9704   |
| 0.0228        | 0.6   | 12000 | 0.0176          | 0.9671   |
| 0.0241        | 0.625 | 12500 | 0.0146          | 0.9755   |
| 0.0234        | 0.65  | 13000 | 0.0181          | 0.9681   |
| 0.0226        | 0.675 | 13500 | 0.0142          | 0.9758   |
| 0.0225        | 0.7   | 14000 | 0.0169          | 0.9718   |
| 0.0218        | 0.725 | 14500 | 0.0151          | 0.9711   |
| 0.0212        | 0.75  | 15000 | 0.0176          | 0.9735   |
| 0.0199        | 0.775 | 15500 | 0.0131          | 0.9741   |
| 0.0208        | 0.8   | 16000 | 0.0131          | 0.9775   |
| 0.0217        | 0.825 | 16500 | 0.0123          | 0.9788   |
| 0.0208        | 0.85  | 17000 | 0.0145          | 0.9758   |
| 0.0217        | 0.875 | 17500 | 0.0154          | 0.9694   |
| 0.0197        | 0.9   | 18000 | 0.0138          | 0.9765   |
| 0.0205        | 0.925 | 18500 | 0.0138          | 0.9748   |
| 0.0203        | 0.95  | 19000 | 0.0146          | 0.9748   |
| 0.0198        | 0.975 | 19500 | 0.0131          | 0.9755   |
| 0.0204        | 1.0   | 20000 | 0.0158          | 0.9735   |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1