phi3-mini-math / mini_lora.yaml
jrc's picture
Upload folder using huggingface_hub
888bdd8 verified
raw
history blame
2.42 kB
# Config for multi-device LoRA finetuning in lora_finetune_distributed.py
# using a Phi3 mini (3.8B) model
#
# This config assumes that you've run the following command before launching
# this run:
# tune download microsoft/Phi-3-mini-4k-instruct --output-dir /tmp/Phi-3-mini-4k-instruct --hf-token <HF_TOKEN> --ignore-patterns ""
#
# To launch on 2 devices, run the following command from root:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config phi3/mini_lora
#
# You can add specific overrides through the command line. For example
# to override the checkpointer directory while launching training
# you can run:
# tune run --nnodes 1 --nproc_per_node 2 lora_finetune_distributed --config phi3/mini_lora checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR>
#
# This config works best when the model is being fine-tuned on 2+ GPUs.
# For single device LoRA finetuning please use mini_lora_single_device.yaml
# or mini_qlora_single_device.yaml
# Model Arguments
model:
_component_: torchtune.models.phi3.lora_phi3_mini
lora_attn_modules: ['q_proj', 'v_proj']
apply_lora_to_mlp: False
apply_lora_to_output: False
lora_rank: 8
lora_alpha: 16
tokenizer:
_component_: torchtune.models.phi3.phi3_mini_tokenizer
path: ./phi3/tokenizer.model
checkpointer:
_component_: torchtune.utils.FullModelHFCheckpointer
checkpoint_dir: ./phi3
checkpoint_files: [
model-00001-of-00002.safetensors,
model-00002-of-00002.safetensors
]
output_dir: lora-phi3-math
model_type: PHI3_MINI
resume_from_checkpoint: False
# Dataset and Sampler
dataset:
_component_: torchtune.datasets.instruct_dataset
source: TIGER-Lab/MATH-plus
template: AlpacaInstructTemplate
train_on_input: True
packed: False
max_seq_len: 4096
split: train
seed: 123
shuffle: True
batch_size: 2
# Optimizer and Scheduler
optimizer:
_component_: torch.optim.AdamW
weight_decay: 0.01
lr: 3e-4
lr_scheduler:
_component_: torchtune.modules.get_cosine_schedule_with_warmup
num_warmup_steps: 100
loss:
_component_: torch.nn.CrossEntropyLoss
# Training
epochs: 1
max_steps_per_epoch: 2000
gradient_accumulation_steps: 16
# Logging
output_dir: lora-phi3-math
metric_logger:
_component_: torchtune.utils.metric_logging.WandBLogger
project: lora-phi3-math
log_every_n_steps: 1
log_peak_memory_stats: False
# Environment
device: cuda
dtype: bf16
enable_activation_checkpointing: False