--- tags: - merge - mergekit - lazymergekit - Kukedlc/NeuTrixOmniBe-7B-model-remix - PetroGPT/WestSeverus-7B-DPO - vanillaOVO/supermario_v4 base_model: - Kukedlc/NeuTrixOmniBe-7B-model-remix - PetroGPT/WestSeverus-7B-DPO - vanillaOVO/supermario_v4 license: apache-2.0 --- # MoEv4Config-TestWeightedTIES-7b MoEv4Config-TestWeightedTIES-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/NeuTrixOmniBe-7B-model-remix](https://huggingface.co/Kukedlc/NeuTrixOmniBe-7B-model-remix) * [PetroGPT/WestSeverus-7B-DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO) * [vanillaOVO/supermario_v4](https://huggingface.co/vanillaOVO/supermario_v4) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuTrixOmniBe-7B-model-remix # No parameters necessary for base model - model: Kukedlc/NeuTrixOmniBe-7B-model-remix parameters: density: [1, 0.7, 0.1] weight: [0, 0.3, 0.7, 1] - model: PetroGPT/WestSeverus-7B-DPO parameters: density: [1, 0.7, 0.3] weight: [0, 0.25, 0.5, 1] - model: vanillaOVO/supermario_v4 parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: Kukedlc/NeuTrixOmniBe-7B-model-remix parameters: int8_mask: true normalize: true sparsify: - filter: mlp value: 0.5 - filter: self_attn value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jsfs11/MoEv4Config-TestWeightedTIES-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```