jssky commited on
Commit
5b630f4
1 Parent(s): 9b03bd6

End of training

Browse files
Files changed (2) hide show
  1. README.md +166 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: unsloth/llama-3-8b-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 443b2ba2-8e69-4978-b587-f56d50c64c4c
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: unsloth/llama-3-8b-Instruct
23
+ bf16: false
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 3aac058dfb17832d_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/3aac058dfb17832d_train_data.json
32
+ type:
33
+ field_instruction: notes
34
+ field_output: name
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ devices:
42
+ - 0
43
+ - 1
44
+ - 2
45
+ - 3
46
+ - 4
47
+ - 5
48
+ - 6
49
+ - 7
50
+ early_stopping_patience: null
51
+ eval_max_new_tokens: 128
52
+ eval_table_size: null
53
+ evals_per_epoch: 4
54
+ flash_attention: true
55
+ fp16: true
56
+ fsdp: null
57
+ fsdp_config: null
58
+ gradient_accumulation_steps: 4
59
+ gradient_checkpointing: false
60
+ group_by_length: false
61
+ hub_model_id: jssky/443b2ba2-8e69-4978-b587-f56d50c64c4c
62
+ hub_repo: null
63
+ hub_strategy: checkpoint
64
+ hub_token: null
65
+ learning_rate: 0.0002
66
+ load_in_4bit: false
67
+ load_in_8bit: false
68
+ local_rank: null
69
+ logging_steps: 1
70
+ lora_alpha: 32
71
+ lora_dropout: 0.05
72
+ lora_fan_in_fan_out: null
73
+ lora_model_dir: null
74
+ lora_r: 16
75
+ lora_target_linear: true
76
+ lr_scheduler: cosine
77
+ max_steps: 10
78
+ micro_batch_size: 1
79
+ mlflow_experiment_name: /tmp/3aac058dfb17832d_train_data.json
80
+ model_type: AutoModelForCausalLM
81
+ num_epochs: 1
82
+ num_gpus: 8
83
+ optimizer: adamw_bnb_8bit
84
+ output_dir: miner_id_24
85
+ pad_to_sequence_len: true
86
+ resume_from_checkpoint: null
87
+ s2_attention: null
88
+ sample_packing: false
89
+ saves_per_epoch: 4
90
+ sequence_len: 4056
91
+ strict: false
92
+ tf32: false
93
+ tokenizer_type: AutoTokenizer
94
+ train_batch_size: 32
95
+ train_on_inputs: false
96
+ trust_remote_code: true
97
+ val_set_size: 0.05
98
+ wandb_entity: null
99
+ wandb_mode: online
100
+ wandb_name: 443b2ba2-8e69-4978-b587-f56d50c64c4c
101
+ wandb_project: Gradients-On-Demand
102
+ wandb_run: your_name
103
+ wandb_runid: 443b2ba2-8e69-4978-b587-f56d50c64c4c
104
+ warmup_steps: 10
105
+ weight_decay: 0.0
106
+ xformers_attention: null
107
+
108
+ ```
109
+
110
+ </details><br>
111
+
112
+ # 443b2ba2-8e69-4978-b587-f56d50c64c4c
113
+
114
+ This model is a fine-tuned version of [unsloth/llama-3-8b-Instruct](https://huggingface.co/unsloth/llama-3-8b-Instruct) on the None dataset.
115
+ It achieves the following results on the evaluation set:
116
+ - Loss: 2.9921
117
+
118
+ ## Model description
119
+
120
+ More information needed
121
+
122
+ ## Intended uses & limitations
123
+
124
+ More information needed
125
+
126
+ ## Training and evaluation data
127
+
128
+ More information needed
129
+
130
+ ## Training procedure
131
+
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 0.0002
136
+ - train_batch_size: 1
137
+ - eval_batch_size: 1
138
+ - seed: 42
139
+ - distributed_type: multi-GPU
140
+ - num_devices: 8
141
+ - gradient_accumulation_steps: 4
142
+ - total_train_batch_size: 32
143
+ - total_eval_batch_size: 8
144
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
145
+ - lr_scheduler_type: cosine
146
+ - lr_scheduler_warmup_steps: 10
147
+ - training_steps: 10
148
+ - mixed_precision_training: Native AMP
149
+
150
+ ### Training results
151
+
152
+ | Training Loss | Epoch | Step | Validation Loss |
153
+ |:-------------:|:------:|:----:|:---------------:|
154
+ | 3.9256 | 0.0010 | 1 | 4.2156 |
155
+ | 4.0467 | 0.0031 | 3 | 4.2156 |
156
+ | 3.7127 | 0.0062 | 6 | 3.7614 |
157
+ | 3.2615 | 0.0093 | 9 | 2.9921 |
158
+
159
+
160
+ ### Framework versions
161
+
162
+ - PEFT 0.13.2
163
+ - Transformers 4.46.0
164
+ - Pytorch 2.5.0+cu124
165
+ - Datasets 3.0.1
166
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0615e375429b88d887c5b1ce05a729c087791ed5b10234d95a8bc737d71a27b9
3
+ size 167934026