--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-en results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.35723514211886304 --- # whisper-tiny-en This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.9035 - Wer Ortho: 0.354643 - Wer: 0.357235 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 4000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.0005 | 35.71 | 500 | 0.7515 | 36.1373 | 36.4341 | | 0.0002 | 71.43 | 1000 | 0.8095 | 36.4065 | 36.5633 | | 0.0001 | 107.14 | 1500 | 0.8421 | 36.4738 | 36.6925 | | 0.0001 | 142.86 | 2000 | 0.8636 | 35.4643 | 35.5943 | | 0.0001 | 178.57 | 2500 | 0.8822 | 35.6662 | 35.7235 | | 0.0 | 214.29 | 3000 | 0.8931 | 35.4643 | 35.7235 | | 0.0 | 250.0 | 3500 | 0.9013 | 35.4643 | 35.7235 | | 0.0 | 285.71 | 4000 | 0.9035 | 35.4643 | 35.7235 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3