File size: 1,814 Bytes
4eef387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
tags:
- merge
- mergekit
- lazymergekit
- SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
base_model:
- SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
---

# SciPhi-Mistral-RAG-Hermes-7B-32k

SciPhi-Mistral-RAG-Hermes-7B-32k is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [SciPhi/SciPhi-Self-RAG-Mistral-7B-32k](https://huggingface.co/SciPhi/SciPhi-Self-RAG-Mistral-7B-32k)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
        layer_range: [0, 7]
  - sources:
      - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
        layer_range: [8, 16]
  - sources: 
      - model: SciPhi/SciPhi-Self-RAG-Mistral-7B-32k 
        layer_range: [17, 24]
  - sources:
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [25, 32]

merge_method: slerp
base_model: SciPhi/SciPhi-Self-RAG-Mistral-7B-32k
parameters:
  t:
  - filter: self_attn
    value: [0, 0.5, 0.3, 0.7, 1]
  - filter: mlp
    value: [1, 0.5, 0.7, 0.3, 0]
  - value: 0.5
dtype: float16
tokenizer_source: base

```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "jtatman/SciPhi-Mistral-RAG-Hermes-7B-32k"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```