File size: 2,139 Bytes
114a265 0d06570 114a265 0d06570 4707370 5404b9c 0d06570 4707370 13a06a4 114a265 fc55243 114a265 fc55243 114a265 fc55243 114a265 7b2c575 fc55243 7b2c575 114a265 0d06570 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: mit
base_model: vicgalle/gpt2-open-instruct-v1
tags:
- generated_from_trainer
- Transformers
- GPT2
model-index:
- name: hh-rlhf
results: []
datasets:
- Anthropic/hh-rlhf
- hakurei/open-instruct-v1
tokenizers:
- GPT2Tokenizer
language:
- en
library_name: transformers
metrics:
- bleu
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hh-rlhf
This model is a fine-tuned version of [vicgalle/gpt2-open-instruct-v1](https://huggingface.co/vicgalle/gpt2-open-instruct-v1) on an subset (15k) of the Anthropic/hh-rlhf dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1534
## Model description
GPT2 open instruct was trained on the open-instruct dataset fully. The reimagines one LM head as a partial rhlf adapter, with subtle reinforcements.
## Intended uses & limitations
Intended to study the intersection of instruct models and prompting that focuses on subtle exchanges of prompting. This probably needs to be refined substantially at this point.
## Training and evaluation data
```python
Train dataset size: 15000
Test dataset size: 500
Dataset({
features: ['chosen', 'rejected'],
num_rows: 15000
})
Dataset({
features: ['chosen', 'rejected'],
num_rows: 500
})
```
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.3108 | 1.0 | 7500 | 2.1799 |
| 2.265 | 2.0 | 15000 | 2.1632 |
| 2.2507 | 3.0 | 22500 | 2.1567 |
| 2.2519 | 4.0 | 30000 | 2.1534 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3 |