File size: 4,226 Bytes
50ea912
 
 
 
 
 
 
 
898aba5
 
 
 
 
 
 
 
 
 
50ea912
 
 
 
 
898aba5
50ea912
 
 
 
 
 
 
898aba5
50ea912
898aba5
50ea912
 
 
 
 
 
 
fd88a9e
 
 
 
50ea912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- winograd_wsc
metrics:
- rouge
widget:
- text: Sam has a Parker pen. He loves writing with it.
  example_title: Example 1
- text: Coronavirus quickly spread worldwide in 2020. The virus mostly affects elderly
    people. They can easily catch it.
  example_title: Example 2
- text: First, the manager evaluates the candidates. Afterwards, he notifies the candidates
    regarding the evaluation.
  example_title: Example 3
base_model: google/flan-t5-large
model-index:
- name: flan-t5-large-coref
  results:
  - task:
      type: text2text-generation
      name: Sequence-to-sequence Language Modeling
    dataset:
      name: winograd_wsc
      type: winograd_wsc
      config: wsc285
      split: test
      args: wsc285
    metrics:
    - type: rouge
      value: 0.9495
      name: Rouge1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-large-coref

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the winograd_wsc dataset.  

The model was trained on the task of coreference resolution.  

It achieves the following results on the evaluation set:
- Loss: 0.2404
- Rouge1: 0.9495
- Rouge2: 0.9107
- Rougel: 0.9494
- Rougelsum: 0.9494
- Gen Len: 23.4828

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.0169        | 1.0   | 16   | 0.6742          | 0.7918 | 0.6875 | 0.7836 | 0.7847    | 18.2414 |
| 0.6275        | 2.0   | 32   | 0.5093          | 0.8776 | 0.7947 | 0.8734 | 0.8732    | 21.5517 |
| 0.596         | 3.0   | 48   | 0.4246          | 0.9104 | 0.8486 | 0.9085 | 0.9091    | 22.5172 |
| 0.743         | 4.0   | 64   | 0.3632          | 0.9247 | 0.8661 | 0.9235 | 0.9231    | 22.8621 |
| 0.5007        | 5.0   | 80   | 0.3301          | 0.9353 | 0.8845 | 0.9357 | 0.9353    | 22.8621 |
| 0.2567        | 6.0   | 96   | 0.3093          | 0.9388 | 0.8962 | 0.9392 | 0.9388    | 22.9655 |
| 0.4146        | 7.0   | 112  | 0.2978          | 0.9449 | 0.907  | 0.9455 | 0.9458    | 23.1034 |
| 0.1991        | 8.0   | 128  | 0.2853          | 0.9454 | 0.9064 | 0.946  | 0.9462    | 23.069  |
| 0.1786        | 9.0   | 144  | 0.2794          | 0.9475 | 0.9097 | 0.9475 | 0.9477    | 23.069  |
| 0.3559        | 10.0  | 160  | 0.2701          | 0.9424 | 0.9013 | 0.9428 | 0.9426    | 23.0345 |
| 0.2059        | 11.0  | 176  | 0.2636          | 0.9472 | 0.9069 | 0.9472 | 0.9472    | 23.0345 |
| 0.199         | 12.0  | 192  | 0.2592          | 0.9523 | 0.9141 | 0.9521 | 0.9524    | 23.4483 |
| 0.1634        | 13.0  | 208  | 0.2553          | 0.9523 | 0.9141 | 0.9521 | 0.9524    | 23.4483 |
| 0.2006        | 14.0  | 224  | 0.2518          | 0.9523 | 0.9141 | 0.9521 | 0.9524    | 23.4483 |
| 0.1419        | 15.0  | 240  | 0.2487          | 0.9523 | 0.9141 | 0.9521 | 0.9524    | 23.4483 |
| 0.2089        | 16.0  | 256  | 0.2456          | 0.9523 | 0.9141 | 0.9521 | 0.9524    | 23.4483 |
| 0.1007        | 17.0  | 272  | 0.2431          | 0.9523 | 0.9141 | 0.9521 | 0.9524    | 23.4483 |
| 0.1598        | 18.0  | 288  | 0.2415          | 0.9495 | 0.9107 | 0.9494 | 0.9494    | 23.4828 |
| 0.3088        | 19.0  | 304  | 0.2407          | 0.9495 | 0.9107 | 0.9494 | 0.9494    | 23.4828 |
| 0.2003        | 20.0  | 320  | 0.2404          | 0.9495 | 0.9107 | 0.9494 | 0.9494    | 23.4828 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2