ju-bezdek's picture
Fix of broken bin file
2395a29
|
raw
history blame
3.33 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - ju-bezdek/conll2003-SK-NER
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: outputs
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: ju-bezdek/conll2003-SK-NER
          type: ju-bezdek/conll2003-SK-NER
          args: conll2003-SK-NER
        metrics:
          - name: Precision
            type: precision
            value: 0.8189727994593682
          - name: Recall
            type: recall
            value: 0.8389581169955002
          - name: F1
            type: f1
            value: 0.8288450029922203
          - name: Accuracy
            type: accuracy
            value: 0.9526157920337243

outputs

This model is a fine-tuned version of gerulata/slovakbert on the ju-bezdek/conll2003-SK-NER dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1752
  • Precision: 0.8190
  • Recall: 0.8390
  • F1: 0.8288
  • Accuracy: 0.9526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3237 1.0 878 0.2541 0.7125 0.8059 0.7563 0.9283
0.1663 2.0 1756 0.2370 0.7775 0.8090 0.7929 0.9394
0.1251 3.0 2634 0.2289 0.7732 0.8029 0.7878 0.9385
0.0984 4.0 3512 0.2818 0.7294 0.8189 0.7715 0.9294
0.0808 5.0 4390 0.3138 0.7615 0.7900 0.7755 0.9326
0.0578 6.0 5268 0.3072 0.7548 0.8222 0.7871 0.9370
0.0481 7.0 6146 0.2778 0.7897 0.8156 0.8025 0.9408
0.0414 8.0 7024 0.3336 0.7695 0.8201 0.7940 0.9389
0.0268 9.0 7902 0.3294 0.7868 0.8140 0.8002 0.9409
0.0204 10.0 8780 0.3693 0.7657 0.8239 0.7938 0.9376
0.016 11.0 9658 0.3816 0.7932 0.8242 0.8084 0.9425
0.0108 12.0 10536 0.3607 0.7929 0.8256 0.8089 0.9431
0.0078 13.0 11414 0.3980 0.7915 0.8240 0.8074 0.9423
0.0062 14.0 12292 0.4096 0.7995 0.8247 0.8119 0.9436
0.0035 15.0 13170 0.4177 0.8006 0.8251 0.8127 0.9438

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.1+cu102
  • Datasets 1.17.0
  • Tokenizers 0.10.3