--- license: mit tags: - generated_from_trainer datasets: - ju-bezdek/conll2003-SK-NER metrics: - precision - recall - f1 - accuracy model-index: - name: outputs results: - task: name: Token Classification type: token-classification dataset: name: ju-bezdek/conll2003-SK-NER type: ju-bezdek/conll2003-SK-NER args: conll2003-SK-NER metrics: - name: Precision type: precision value: 0.8189727994593682 - name: Recall type: recall value: 0.8389581169955002 - name: F1 type: f1 value: 0.8288450029922203 - name: Accuracy type: accuracy value: 0.9526157920337243 --- # outputs This model is a fine-tuned version of [gerulata/slovakbert](https://huggingface.co/gerulata/slovakbert) on the [ju-bezdek/conll2003-SK-NER](https://huggingface.co/datasets/ju-bezdek/conll2003-SK-NER) dataset. It achieves the following results on the evaluation (validation) set: - Loss: 0.1752 - Precision: 0.8190 - Recall: 0.8390 - F1: 0.8288 - Accuracy: 0.9526 ## Model description More information needed ## Code example ```python: from transformers import pipeline, AutoModel, AutoTokenizer from spacy import displacy import os model_path="ju-bezdek/slovakbert-conll2003-sk-ner" aggregation_strategy="max" ner_pipeline = pipeline(task='ner', model=model_path, aggregation_strategy=aggregation_strategy) input_sentence= "Ruský premiér Viktor Černomyrdin v piatok povedal, že prezident Boris Jeľcin , ktorý je na dovolenke mimo Moskvy , podporil mierový plán šéfa bezpečnosti Alexandra Lebedu pre Čečensko, uviedla tlačová agentúra Interfax" ner_ents = ner_pipeline(input_sentence) print(ner_ents) ent_group_labels = [ner_pipeline.model.config.id2label[i][2:] for i in ner_pipeline.model.config.id2label if i>0] options = {"ents":ent_group_labels} dicplacy_ents = [{"start":ent["start"], "end":ent["end"], "label":ent["entity_group"]} for ent in ner_ents] displacy.render({"text":input_sentence, "ents":dicplacy_ents}, style="ent", options=options, jupyter=True, manual=True) ``` ### Result: