Commit
·
d145ada
1
Parent(s):
7ef25d3
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
model-index:
|
10 |
+
- name: bert_sentence_classifier
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# bert_sentence_classifier
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 1.4207
|
22 |
+
- F1: 0.6163
|
23 |
+
- Precision: 0.6163
|
24 |
+
- Recall: 0.6163
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 2e-05
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 8
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 3
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:---------:|:------:|
|
55 |
+
| 1.8231 | 0.12 | 500 | 1.5368 | 0.5776 | 0.5776 | 0.5776 |
|
56 |
+
| 1.5269 | 0.25 | 1000 | 1.4710 | 0.5935 | 0.5935 | 0.5935 |
|
57 |
+
| 1.5059 | 0.37 | 1500 | 1.4287 | 0.6091 | 0.6091 | 0.6091 |
|
58 |
+
| 1.4711 | 0.5 | 2000 | 1.4186 | 0.6106 | 0.6106 | 0.6106 |
|
59 |
+
| 1.4269 | 0.62 | 2500 | 1.4154 | 0.6106 | 0.6106 | 0.6106 |
|
60 |
+
| 1.4392 | 0.74 | 3000 | 1.4029 | 0.6197 | 0.6197 | 0.6197 |
|
61 |
+
| 1.4587 | 0.87 | 3500 | 1.3800 | 0.6216 | 0.6216 | 0.6216 |
|
62 |
+
| 1.4519 | 0.99 | 4000 | 1.3790 | 0.6231 | 0.6231 | 0.6231 |
|
63 |
+
| 1.2645 | 1.12 | 4500 | 1.3879 | 0.6201 | 0.6201 | 0.6201 |
|
64 |
+
| 1.2581 | 1.24 | 5000 | 1.4064 | 0.6186 | 0.6186 | 0.6186 |
|
65 |
+
| 1.2425 | 1.36 | 5500 | 1.4008 | 0.6220 | 0.6220 | 0.6220 |
|
66 |
+
| 1.2581 | 1.49 | 6000 | 1.3839 | 0.6209 | 0.6209 | 0.6209 |
|
67 |
+
| 1.2522 | 1.61 | 6500 | 1.3916 | 0.6224 | 0.6224 | 0.6224 |
|
68 |
+
| 1.2675 | 1.73 | 7000 | 1.3816 | 0.6194 | 0.6194 | 0.6194 |
|
69 |
+
| 1.2697 | 1.86 | 7500 | 1.3960 | 0.6125 | 0.6125 | 0.6125 |
|
70 |
+
| 1.258 | 1.98 | 8000 | 1.3871 | 0.6220 | 0.6220 | 0.6220 |
|
71 |
+
| 1.087 | 2.11 | 8500 | 1.4184 | 0.6159 | 0.6159 | 0.6159 |
|
72 |
+
| 1.0504 | 2.23 | 9000 | 1.4144 | 0.6201 | 0.6201 | 0.6201 |
|
73 |
+
| 1.0649 | 2.35 | 9500 | 1.4304 | 0.6175 | 0.6175 | 0.6175 |
|
74 |
+
| 1.0468 | 2.48 | 10000 | 1.4433 | 0.6205 | 0.6205 | 0.6205 |
|
75 |
+
| 1.0711 | 2.6 | 10500 | 1.4420 | 0.6099 | 0.6099 | 0.6099 |
|
76 |
+
| 1.0684 | 2.73 | 11000 | 1.4280 | 0.6114 | 0.6114 | 0.6114 |
|
77 |
+
| 1.0514 | 2.85 | 11500 | 1.4436 | 0.6121 | 0.6121 | 0.6121 |
|
78 |
+
| 1.0729 | 2.97 | 12000 | 1.4207 | 0.6163 | 0.6163 | 0.6163 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.19.2
|
84 |
+
- Pytorch 1.11.0+cu113
|
85 |
+
- Datasets 2.2.2
|
86 |
+
- Tokenizers 0.12.1
|