--- tags: - generated_from_keras_callback - music model-index: - name: juancopi81/mutopia_guitar_mmm results: [] datasets: - juancopi81/mutopia_guitar_dataset widget: - text: "PIECE_START TIME_SIGNATURE=4_4 BPM=90 TRACK_START INST=0 DENSITY=2 BAR_START NOTE_ON=60" example_title: "Time signature 4/4, BPM=90" --- # juancopi81/mutopia_guitar_mmm This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the [Mutopia Guitar Dataset](https://huggingface.co/datasets/juancopi81/mutopia_guitar_dataset). Use the widget to generate your piece and then use [this notebook](https://colab.research.google.com/drive/14vlJwCvDmNH6SFfVuYY0Y18qTbaHEJCY?usp=sharing) to hear it (work in progress). The notebook is adapted from [the one created by Dr. Tristan Behrens](https://huggingface.co/TristanBehrens/js-fakes-4bars). It achieves the following results on the evaluation set: - Train Loss: 0.7588 - Validation Loss: 1.3974 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 9089, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 1.0705 | 1.3590 | 0 | | 0.8889 | 1.3702 | 1 | | 0.7588 | 1.3974 | 2 | ### Framework versions - Transformers 4.21.3 - TensorFlow 2.8.2 - Datasets 2.4.0 - Tokenizers 0.12.1