a2c-PandaReachDense-v2 / config.json
juanfkurucz's picture
Initial commit
5735a9c
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f391ef09fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f391ef06780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684766809855603237, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA0A0WvcvR4j2vv00/0A0WvcvR4j2vv00/0A0WvcvR4j2vv00/0A0WvcvR4j2vv00/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAo0mSvLnTqz+Kdrk/DTxwvunM4D9L39M/qnqcv9pH8j5XT5w/LyU9P4B/3b3dWfe+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADQDRa9y9HiPa+/TT9YKUg9JwpcPJZvjz3QDRa9y9HiPa+/TT9YKUg9JwpcPJZvjz3QDRa9y9HiPa+/TT9YKUg9JwpcPJZvjz3QDRa9y9HiPa+/TT9YKUg9JwpcPJZvjz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.03663427 0.11075171 0.8037061 ]\n [-0.03663427 0.11075171 0.8037061 ]\n [-0.03663427 0.11075171 0.8037061 ]\n [-0.03663427 0.11075171 0.8037061 ]]", "desired_goal": "[[-0.01785738 1.3423988 1.44893 ]\n [-0.23460408 1.7562534 1.6552519 ]\n [-1.2224934 0.47320443 1.2211713 ]\n [ 0.7388486 -0.10815334 -0.48310748]]", "observation": "[[-0.03663427 0.11075171 0.8037061 0.04886755 0.01343015 0.07003705]\n [-0.03663427 0.11075171 0.8037061 0.04886755 0.01343015 0.07003705]\n [-0.03663427 0.11075171 0.8037061 0.04886755 0.01343015 0.07003705]\n [-0.03663427 0.11075171 0.8037061 0.04886755 0.01343015 0.07003705]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIL8RvAe5EL2Acpc8fmMsvcn3qbzlJI48RaK7OjslGT3dSFs+YEwVvc3gSD3xWyY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.00889567 -0.03533271 0.01848722]\n [-0.04208707 -0.02074804 0.01735158]\n [ 0.00143153 0.03738902 0.21414514]\n [-0.03644979 0.04904251 0.1624601 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIeQH20alr+7+UhpRSlIwBbJRLMowBdJRHQHEq491U2k11fZQoaAZoCWgPQwjtC+iFO1fyv5SGlFKUaBVLMmgWR0BxKPkp7TlUdX2UKGgGaAloD0MIq9BALJu58b+UhpRSlGgVSzJoFkdAcScnHNorWnV9lChoBmgJaA9DCDsZHCWvzu6/lIaUUpRoFUsyaBZHQHElOzyBkI51fZQoaAZoCWgPQwjkvtU6cTnzv5SGlFKUaBVLMmgWR0BxNhUhmoR7dX2UKGgGaAloD0MIrkoi+yDL87+UhpRSlGgVSzJoFkdAcTQssQNCq3V9lChoBmgJaA9DCGLboswGGfi/lIaUUpRoFUsyaBZHQHEyX2mHgxd1fZQoaAZoCWgPQwhgBmNEolD0v5SGlFKUaBVLMmgWR0BxMHc32mHhdX2UKGgGaAloD0MINC2xMhr58L+UhpRSlGgVSzJoFkdAcUGE+gUUPHV9lChoBmgJaA9DCAqgGFkyB/S/lIaUUpRoFUsyaBZHQHE/nrleWv91fZQoaAZoCWgPQwgxlumXiPfzv5SGlFKUaBVLMmgWR0BxPc/PgNwzdX2UKGgGaAloD0MIBaVo5V4g8b+UhpRSlGgVSzJoFkdAcTvngpBomHV9lChoBmgJaA9DCJj2zf3VI/a/lIaUUpRoFUsyaBZHQHFM1Li++M91fZQoaAZoCWgPQwiiKqbST3j6v5SGlFKUaBVLMmgWR0BxSuxzJZGKdX2UKGgGaAloD0MIvRx23zE88b+UhpRSlGgVSzJoFkdAcUkj6eoUBXV9lChoBmgJaA9DCCqpE9BEWPq/lIaUUpRoFUsyaBZHQHFHPe1rqMZ1fZQoaAZoCWgPQwh06spneV7xv5SGlFKUaBVLMmgWR0BxWNlpXZGsdX2UKGgGaAloD0MIOUIG8uxy8r+UhpRSlGgVSzJoFkdAcVbx+rlvInV9lChoBmgJaA9DCNgN2xZltvS/lIaUUpRoFUsyaBZHQHFVJq20AtF1fZQoaAZoCWgPQwi1GhL3WDr0v5SGlFKUaBVLMmgWR0BxU0Bo24usdX2UKGgGaAloD0MIuKzCZoBrAMCUhpRSlGgVSzJoFkdAcWZz5oGpuXV9lChoBmgJaA9DCMbctYR8UPO/lIaUUpRoFUsyaBZHQHFkmjO9nK51fZQoaAZoCWgPQwh2+kFdpND/v5SGlFKUaBVLMmgWR0BxYszfrKNidX2UKGgGaAloD0MImShC6nb27r+UhpRSlGgVSzJoFkdAcWDqM3qA0HV9lChoBmgJaA9DCMqK4eoAiPG/lIaUUpRoFUsyaBZHQHF0UeQuEmJ1fZQoaAZoCWgPQwh0Jm2q7pHyv5SGlFKUaBVLMmgWR0BxcntShrWRdX2UKGgGaAloD0MIDfyohv1e/7+UhpRSlGgVSzJoFkdAcXCzdUKiPHV9lChoBmgJaA9DCCC4yhMIu/a/lIaUUpRoFUsyaBZHQHFuzfek56t1fZQoaAZoCWgPQwjW477VOnH9v5SGlFKUaBVLMmgWR0BxgUtZmqYJdX2UKGgGaAloD0MI3Lkw0oua9b+UhpRSlGgVSzJoFkdAcX9lSjxkNHV9lChoBmgJaA9DCN4f71UrE/S/lIaUUpRoFUsyaBZHQHF9mFSKm9B1fZQoaAZoCWgPQwjJAiZw6y74v5SGlFKUaBVLMmgWR0Bxe7LRrrPddX2UKGgGaAloD0MIE51lFqFY7L+UhpRSlGgVSzJoFkdAcYnrD63y7XV9lChoBmgJaA9DCOuM74tL1f2/lIaUUpRoFUsyaBZHQHGH/lQuVX51fZQoaAZoCWgPQwi6nui68EP3v5SGlFKUaBVLMmgWR0Bxhi1b7j1gdX2UKGgGaAloD0MIXaj8a3ml87+UhpRSlGgVSzJoFkdAcYRC3gDRt3V9lChoBmgJaA9DCIocIm5OJfK/lIaUUpRoFUsyaBZHQHGRrHZK3/h1fZQoaAZoCWgPQwh40sJlFXb8v5SGlFKUaBVLMmgWR0Bxj7+T/yXldX2UKGgGaAloD0MIkWCqmbUU9r+UhpRSlGgVSzJoFkdAcY3sOG0u2HV9lChoBmgJaA9DCAJjfQOT2/S/lIaUUpRoFUsyaBZHQHGL/+bVjI91fZQoaAZoCWgPQwh40Oy6t6Lxv5SGlFKUaBVLMmgWR0BxmaYa5wwTdX2UKGgGaAloD0MIzT/6Jk2D7r+UhpRSlGgVSzJoFkdAcZfBTGYKIHV9lChoBmgJaA9DCP0tAfinVO+/lIaUUpRoFUsyaBZHQHGV7sSkCV91fZQoaAZoCWgPQwgkQiPYuP7zv5SGlFKUaBVLMmgWR0BxlAMRYigTdX2UKGgGaAloD0MIPgRVo1fD8r+UhpRSlGgVSzJoFkdAcaDktmL9/HV9lChoBmgJaA9DCHTwTGiS2O2/lIaUUpRoFUsyaBZHQHGe+KoAGSp1fZQoaAZoCWgPQwjqknGMZM/4v5SGlFKUaBVLMmgWR0BxnSbkOqecdX2UKGgGaAloD0MIbOun/6x5+b+UhpRSlGgVSzJoFkdAcZs6unuRcXV9lChoBmgJaA9DCI9QM6SK4vi/lIaUUpRoFUsyaBZHQHGo5KWcBlt1fZQoaAZoCWgPQwjo9LwbC4r1v5SGlFKUaBVLMmgWR0Bxpvg0j1PFdX2UKGgGaAloD0MIeO49XHJc+7+UhpRSlGgVSzJoFkdAcaUlYEGJN3V9lChoBmgJaA9DCLpKd9fZkPK/lIaUUpRoFUsyaBZHQHGjOXE61b91fZQoaAZoCWgPQwhmh/iHLb3uv5SGlFKUaBVLMmgWR0BxsGnBLwnZdX2UKGgGaAloD0MI93ZLcsAu57+UhpRSlGgVSzJoFkdAca5/JeVs13V9lChoBmgJaA9DCObJNQUyO/y/lIaUUpRoFUsyaBZHQHGsrFS88Ld1fZQoaAZoCWgPQwgLYwtBDsruv5SGlFKUaBVLMmgWR0BxqsA0bcXWdX2UKGgGaAloD0MIskrpmV4i87+UhpRSlGgVSzJoFkdAcbeaURnOB3V9lChoBmgJaA9DCCKq8Gd4c/C/lIaUUpRoFUsyaBZHQHG1rZi/fwZ1fZQoaAZoCWgPQwjM64hDNtDzv5SGlFKUaBVLMmgWR0Bxs9rZamoBdX2UKGgGaAloD0MIVAJiEi4k8b+UhpRSlGgVSzJoFkdAcbHwFTvRZ3V9lChoBmgJaA9DCM3K9iFvefK/lIaUUpRoFUsyaBZHQHG+7V4HHFR1fZQoaAZoCWgPQwiZt+o6VFPxv5SGlFKUaBVLMmgWR0BxvQEC/47BdX2UKGgGaAloD0MIejTVk/lH7b+UhpRSlGgVSzJoFkdAcbsuvUz9CXV9lChoBmgJaA9DCASvljszAfK/lIaUUpRoFUsyaBZHQHG5QoXsPat1fZQoaAZoCWgPQwhYkGYsms7uv5SGlFKUaBVLMmgWR0Bxxg/u9eyBdX2UKGgGaAloD0MIb2JITiZu8r+UhpRSlGgVSzJoFkdAccQj9n9NvnV9lChoBmgJaA9DCD1H5LuUOue/lIaUUpRoFUsyaBZHQHHCUiUxEfF1fZQoaAZoCWgPQwg1zxH5LiXsv5SGlFKUaBVLMmgWR0BxwGcXm/34dX2UKGgGaAloD0MIBtSbUfPV5r+UhpRSlGgVSzJoFkdAcc1zU7Sy+3V9lChoBmgJaA9DCGWJzjKL0OW/lIaUUpRoFUsyaBZHQHHLh60IC2d1fZQoaAZoCWgPQwj/PXjt0kbwv5SGlFKUaBVLMmgWR0BxybTF2mpEdX2UKGgGaAloD0MI+BisONXa9r+UhpRSlGgVSzJoFkdAccfK+i8Fp3V9lChoBmgJaA9DCK5GdqVlpPO/lIaUUpRoFUsyaBZHQHHUs2WIGhV1fZQoaAZoCWgPQwiuf9dnznrvv5SGlFKUaBVLMmgWR0Bx0snXumaZdX2UKGgGaAloD0MICRoziXoB8L+UhpRSlGgVSzJoFkdAcdD6JIlMRHV9lChoBmgJaA9DCL38TpMZ7++/lIaUUpRoFUsyaBZHQHHPDst03fh1fZQoaAZoCWgPQwhE393KEp32v5SGlFKUaBVLMmgWR0Bx3F5E+gUUdX2UKGgGaAloD0MIjX40nDK39r+UhpRSlGgVSzJoFkdAcdpyYXwb2nV9lChoBmgJaA9DCLVv7q8ed/e/lIaUUpRoFUsyaBZHQHHYpY9xIat1fZQoaAZoCWgPQwhjtfl/1VHwv5SGlFKUaBVLMmgWR0Bx1rr9l2/0dX2UKGgGaAloD0MIUmUYd4No7b+UhpRSlGgVSzJoFkdAceQayKNyYHV9lChoBmgJaA9DCDF9ryE4rvK/lIaUUpRoFUsyaBZHQHHiLwz+FUR1fZQoaAZoCWgPQwjfh4OEKF/vv5SGlFKUaBVLMmgWR0Bx4F7OVxCIdX2UKGgGaAloD0MI+rX103/W57+UhpRSlGgVSzJoFkdAcd5yMDOkcnV9lChoBmgJaA9DCBcrajANw/S/lIaUUpRoFUsyaBZHQHHruN96Tnt1fZQoaAZoCWgPQwhpb/CFyVTjv5SGlFKUaBVLMmgWR0Bx6c5jpcHGdX2UKGgGaAloD0MIgZICC2DK77+UhpRSlGgVSzJoFkdAcef+UyHmBHV9lChoBmgJaA9DCEYkCi3r/uy/lIaUUpRoFUsyaBZHQHHmE92X9it1fZQoaAZoCWgPQwgHeNLCZZXjv5SGlFKUaBVLMmgWR0Bx804S6DoRdX2UKGgGaAloD0MIC0RPyqQG8L+UhpRSlGgVSzJoFkdAcfFjHn2ZiXV9lChoBmgJaA9DCO+usyH/TPK/lIaUUpRoFUsyaBZHQHHvkSqU/wB1fZQoaAZoCWgPQwi2v7M9ekP0v5SGlFKUaBVLMmgWR0Bx7aWQfZEldX2UKGgGaAloD0MIsyRATS1b77+UhpRSlGgVSzJoFkdAcfq0xdpqRHV9lChoBmgJaA9DCK9DNSVZB+i/lIaUUpRoFUsyaBZHQHH4yNn5BTp1fZQoaAZoCWgPQwj8cfvlkxXqv5SGlFKUaBVLMmgWR0Bx9vfFaSs9dX2UKGgGaAloD0MI8uzyrQ9r87+UhpRSlGgVSzJoFkdAcfUNiH6/I3V9lChoBmgJaA9DCFnbFI+LKvC/lIaUUpRoFUsyaBZHQHICe0ojOcF1fZQoaAZoCWgPQwgbvK/KhUr1v5SGlFKUaBVLMmgWR0ByAI6xPfsNdX2UKGgGaAloD0MIdlCJ6xhX7r+UhpRSlGgVSzJoFkdAcf69jgAIY3V9lChoBmgJaA9DCLh4eM+B5em/lIaUUpRoFUsyaBZHQHH80ulGgBd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}